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ABSTRACT
In Kenya, climate variability and change threaten smallholder, rainfed farms, with crop fail-
ures, yield reductions, and pest infestations. Efficient agroecological strategies, such as Push- 
Pull intercropping, offer documented benefits including pest control, improved soil fertility, 
and water conservation compared to traditional maize monocropping. To date, no studies 
exist comparing traditional maize monocropping and Push-Pull intercropping using earth 
observation tools over several growing seasons in East Africa. Our research addresses this by 
harmonizing Landsat 7, 8, 9 with Sentinel-2 remote sensing time series from 2016 to 2023. 
Phenological metrics of 15 growing seasons are extracted based on a threshold method 
using the Normalized Difference Vegetation Index (NDVI) as a vegetation proxy. Field data 
from 58 sites in southwestern Kenya provided training for this analysis, revealing detectable 
inter-class differences. Notably, Push-Pull intercrop fields showed greater resilience during 
biotic stress events, such as the locust outbreak in 2020 short rainy season and the fall 
armyworm infestation in combination with delayed and below-average rainfall during the 
short 2021 and the long 2022 growing seasons. Higher maximum NDVI and extended season 
duration indicated a higher resilience of Push-Pull farming under unfavorable agricultural 
conditions. Short growing seasons with unfavorable conditions showed earlier end of seasons 
in both systems, whereas long growing seasons with unfavorable conditions caused delayed 
onset and end of seasons. This study marks the first attempt to leverage earth observation 
data to compare traditional maize agriculture with agricultural systems featuring applied 
ecological management strategies, showcasing the potential of earth observation tools to 
monitor and evaluate agroecological resilience.
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1. Introduction

Climate change can be defined as significant long- 
term variations in meteorological conditions such as 
precipitation and temperature (Allen 2003; World 
Meteorological Organization 1992). The effects of 
changing climate are inevitable and felt globally 
(Adams et al. 1998; Aydinalp and Cresser 2008; 
Salvo, Begalli, and Signorello 2013). It is a cause of 
concern considering the importance of variations in 
meteorological parameters on agricultural production 
(Sharma et al. 2022; Torres, Howitt, and Rodrigues  
2019). This becomes more alarming considering 
that, to meet the food demand of the projected glo-
bal population of 9 billion by 2050, an increase in 
staple cereal production of +70% is required 
(Neupane et al. 2022).

The gravity of climate change impact on agricul-
tural yield varies by crop type, geographical location 
and local climate (Challinor et al. 2014). The impact of 
climate change is distributed unevenly worldwide. 
The current climatic tendencies will lead to destruc-
tive changes to sub-Saharan Africa (Mubenga- 
Tshitaka et al. 2023; Schlenker and Lobell 2010). In 
East Africa, current trends indicate up to 20% increase 
in rainfall from December to February and a decrease 
in rainfall of up to 10% from June to August accom-
panied by higher projected temperatures of up to 
1.9°C by the year 2050 (Gebrechorkos, Hülsmann, 
and Bernhofer 2019; Hulme et al. 2001; IPCC 2023). 
In addition, highly dynamic population growth (UN  
2018) and a very dynamic urbanization trend 
(Taubenböck et al. 2024) predicted for sub-Saharan 
Africa will increase food insecurity.

East African countries are highly reliant on the 
agricultural sector. For Kenya, agriculture accounts 
for an estimated 21.2% of Gross Domestic Product 
(GDP) and employs over 70% of the rural population 
(The World Bank 2022). Moreover, smallholder farm-
ers, most vulnerable demographic, account for more 
than 80% of total agricultural output of Kenya (Market 
Alliance 2022).

Changing climate results in nightly and daily warm-
ing as well as shifts in precipitation patterns in Kenya 
(Malhi, Kaur, and Kaushik 2021; Torres, Howitt, and 
Rodrigues 2019). Temperature and precipitation are 
direct inputs in agricultural production, hence any 
changes to these parameters will affect the agricul-
tural output (Deschenes and Greenstone 2004), i.e. 

through abiotic stresses (Halford et al. 2015; Sánchez- 
Bermúdez et al. 2022). Based on Kenya’s annual maize 
yield data from 1979 to 2012, significant increases in 
temperature and reduction in seasonal rainfall 
resulted in maize yield decreases of 0.07 tons/ha/ 
decade (Mumo, Yu, and Fang 2018). More recent 
maize yield data from 2012 to 2022 have shown 
increases in maize yield during growing seasons 
with increased seasonal rainfall (Ondiek, Saber, and 
Abdel-Fattah 2024). Research using household sur-
veys mirror the findings of numerical and statistical 
studies. Ochieng, Kirimi, and Mathenge (2016) found 
that long-term temperature increase has a larger 
impact on small-scale crop production than short- 
term precipitation fluctuations. Severe temperature 
during the vegetative state has also led to decreased 
cereal kernel quality and amounts (Hütsch, Jahn, and 
Schubert 2019). Timely rainfall can be a mitigating 
factor; however, severe fluctuations in precipitation 
can also lead to outstanding yield loss and crop failure 
(GEOGLAM 2019). To make matters worse, negative 
effects on agriculture through biotic stresses such as 
presence of weeds, pest outbreaks and soil fertility 
decrease have also been widely recognized (Jafari 
Jozani et al. 2022; Shahzad et al. 2021). Above- 
average rains in 2019 led to wet soil and vegetation 
conditions which subsequently created favorable set-
tings for locust gregarization in East-Africa (Cressman  
2013). The fall armyworm (FAW) invasion since 
2016 has caused severe damage to maize yield and 
is a major threat to food security throughout East 
Africa (Sisay et al. 2019; Tambo et al. 2020). Other 
important constraints to maize production include 
the lepidopterous stemborers (Kfir et al. 2002; 
Midega et al. 2015) and parasitic Striga weed (David 
et al. 2022; Khan et al. 2002), which can cause mea-
sured maize yield losses of up to 88%.

Considering these challenges, agroecological man-
agement strategies for the control of stemborers and 
striga weeds in maize fields have been widely devel-
oped in providing a biological alternative to expen-
sive and harmful pesticides. By 2016, Push-Pull 
intercropping have been employed by over 125.000 
smallholder farmers in East Africa leading to substan-
tial maize yield increases (Khan et al. 2016). Push-Pull 
is a stimulo-deterrent diversionary strategy that relies 
on behavioral manipulation using airborne volatile 
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organic compound from companion plants to man-
age crop pests. To achieve this, the main cereal crop, 
such as maize, is intercropped with a repellent plant 
Desmodium sp., that pushes the stemborer and FAW 
pests from the main crop. The Desmodium root exu-
dates are also known to suppress parasitic Striga 
weeds by triggering suicidal germination (Hooper 
et al. 2015). In addition, the leguminous Desmodium 
fixes nitrogen in the soil enhancing soil fertility and 
retaining soil moisture in dry conditions. Around the 
plot edges, a trap plant, Brachiaria sp., is planted that 
naturally attracts stemborer and acts as a pull for the 
egg-laying female stemborer (Khan et al. 2016; Khan 
et al. 2001; Midega et al. 2015). The push and pull 
plants are both valuable additives, as Desmodium is 
rich in protein and Brachiaria contains high levels of 
carbohydrates and are known to increase milk pro-
duction in cattle. Acting together, these plants pro-
vide a push and pull effect which increases maize 
yield, maize resistivity to stemborer, FAW and striga 
weeds, enhances soil fertility and promotes water 
retention (Buleti et al. 2023). Ecological management 
such as Push-Pull intercropping has shown promise 
for the sustainable management of insect pests 
(Steffan-Dewenter, Kerr, and Rachel 2024). Yet, few 
studies have compared the response of Push-Pull 
intercrops to external forcings with that of traditional 
maize monocrop fields on a temporal scale using 
earth observation (EO) data.

The smallholder farms in Kenya are largely rainfed, 
making them highly dependent on timely seasonal 
rains (Richard et al. 2017). It is common to see the 
yearly total precipitation relatively unchanged, while 
the timing of the rainfall and its intensity become 
steadily more difficult to predict and adapt to (Otte 
et al. 2017; Torres, Howitt, and Rodrigues 2019). The 
onset of the seasonal rainfall is an important factor 
contributing to a successful growing season. The tim-
ing of the rains will determine the planning and pre-
paration of the land as well as the sowing of the crop 
(Ojo, Temenu, and Ilunga 2019). Therefore, the tem-
poral variations in rainfall and its intensity have 
a direct impact on food supply.

In this regard, capturing the seasonal phenology of 
agriculture is crucial to provide timely information on 
plant responses to external forcings. Despite the added 
value of EO already demonstrated in a range of agri-
cultural applications (Gao and Zhang 2021; Worrall 
et al. 2023), many studies rely on traditional crop 

monitoring through household surveys, which leads 
to sparse information based on little to no integration 
of EO-based crop yield and condition models 
(Nakalembe et al. 2021, Qader et al. 2021). This 
approach suffers from several limitations: (i) it requires 
time and a high amount of human resources, (ii) the 
generated output provides only a local assessment 
preventing the results from being generalized across 
relevant regional scales, and (iii) the data collection at 
a single timestep prevents incorporation of a temporal 
element (Henrys and Jarvis 2019). In contrast, earth 
observation presents a significant potential to over-
come such limitations by introducing remote sensing 
data at multiple temporal and spatial resolutions.

The present study focuses on demonstrating the 
response of varying management strategies of agri-
culture to external climatic forcings by using the mul-
tispectral-normalized difference vegetation index 
(NDVI) to estimate phenological metrics, such as 
start, peak and end of seasons on field-level. The 
method was applied on maize monocrop and maize 
Push-Pull intercrop fields in the Lake Victoria region of 
Kenya over several growing seasons by employing 
a harmonized dense time series of Landsat and 
Sentinel-2 observations and ground truth data with 
the aim of illustrating the ability of both systems to 
perform under varying climatic conditions. We speci-
fically aim to: (i) synthesize available climatological 
knowledge to derive an accurate depiction of the 
climatic conditions and biotic stresses in the area 
from 2016 to 2023, (ii) extract the phenological 
metrics of maize monocrop and Push-Pull fields and 
(iii) examine the impact of climatic and biotic factors 
on the performance of these two agricultural systems.

2. Materials and methods

2.1. Study area

The study area is located in southwestern Kenya 
(Figure 1). In terms of climate, the region is part of 
the tropical rainforest climate zone and is character-
ized by relatively constant high temperatures of 18°C 
or higher and generally high yearly rainfall with over 
2.000 mm per year (Beck et al. 2018). The climate in 
the area is heavily influenced by the Inter Tropical 
Convergence Zone (ITCZ) (Palmer et al. 2023). The 
annual changes of the ITCZ result in two wet seasons: 
April to June known as the “long rainy season” and 
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October to December referred to as “short rainy sea-
son” (The World Bank 2020). This results in a bimodal 
growing season pattern with the growing seasons 
occurring in the periods of March to July and 
October to December.

The area is characterized by fertile agricultural land 
which is predominantly rainfed. As a result, the majority 
of the population performs small-scale farming, graz-
ing, and fishing. A wide variety of staple and cash crops 
are cultivated in the area, most notably maize, cassava, 
sweet potato, beans, groundnuts, banana, sugarcane, 
sorghum, and coffee (Ekesa et al. 2015).

2.2. Data

2.2.1. Satellite data
For the temporal analysis, we used freely available 
high-spatial resolution products from USGS Landsat 
missions and Copernicus Sentinel-2 program 

(Table 2). We used the Landsat Level 2 products, 
which contain atmospherically corrected and orthor-
ectified surface reflectance values. The Landsat pro-
ducts have a spatial resolution of 30 meters with 
a panchromatic band in 15-meter resolution and pro-
vide seven spectral bands of which red and near- 
infrared were used in this study to derive the vegeta-
tion index. The Landsat constellation is set up with an 
offset which allows a repeat coverage of 8 days, while 
the Sentinel-2 mission provides an image scene every 
5–6 days. Sentinel-2 sensor provides 12 spectral 
bands in 10-to-20-meter spatial resolution. The 
Sentinel-2 Level 2 images are atmospherically cor-
rected using ESA´s sen2cor algorithm (Main-Knorn 
et al. 2017).

2.2.2. Ground reference and in situ data
A data gathering campaign took place during the 
long growing season in May 2023. The campaign 

Figure 1. Overview of the study area. Spatial distribution of the in-situ data gathered during the field work is shown in A) where single 
points denote fields containing one or several sampled fields, regional extent of the study area in B), and continental extent of the 
regional map shown in C). Sentinel-2 cloud free composite is used as a background layer for A) and Natural Earth vector and raster 
map data available at naturalearthdata.com/ is used as background for B) and C).
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focused on surveying the four maize-producing 
regions in Kenya close to Lake Victoria: Siaya, 
Kisumu, Homa Bay and Migori (Figure 1). During 
the survey, corner and center coordinates of Push- 
Pull intercrop and maize monocrop fields were col-
lected using GPS Coordinates App Version 4.71 
(174). Afterwards the in-situ data was imported to 
the QGIS 3.22.6 and with the help of the satellite 
basemap, small field boundary adjustments were 
made. We used only fields containing the same 
crop type throughout the study period, relying on 
information provided by the farmers for pre- 
seasons. In total, 58 ground-referenced fields have 
been selected of which 26 were Push-Pull and 32 
were maize monocrop fields. An example of Push- 
Pull intercrop and maize monocrop fields can be 
seen in Appendix B. A summary of the field dimen-
sions for each group can be seen in Table 1. The 
farmers were kept in regular contact throughout the 
study duration. Field visits by the local agricultural 
scientists from International Centre of Insect 
Physiology and Ecology (icipe) took place at 
a regular basis ensuring continues in situ data vali-
dation. The data gathering campaign concluded 
with the interviews of farmers whose fields were 
sampled during which the crop type of previous 
seasons was confirmed. The farmer interviews 
added insights into agricultural tendencies in the 
area and individual perspectives on the conditions 
of the local climate and its agricultural impacts.

2.2.3. Climate and growing season condition data
Several systems and tools leveraging state of the art 
earth observation data are readily available and 
have been deployed in national agricultural moni-
toring programs. The GEOGLAM Crop Monitor for 
Early Warning (CM4EW) is a relatively recent crop 
monitoring tool with the focus of providing 
a reliable and vetted crop assessment for countries 
exposed to food insecurity (Becker-Reshef et al.  
2020). CM4EW provides monthly crop condition 
assessments based on multi-source consensus data. 
The monthly reports are prepared at the end of the 
month, starting ten days before the publication date 
to ensure timely information. Partner organizations 
submit crop condition data which is then compli-
mented with agrometeorological earth observation 
data at the sub-national level (Becker-Reshef et al.  
2020). In addition to agricultural assessments, regio-
nal and global climatic conditions which are likely to 
affect the growing season and crop yield are pro-
jected and outlined. A total of 88 monthly crop 
condition reports and 6 special reports for the 
study area are available for the 2016–2023 period 
and were used in this study.

We used ERA5-Land reanalysis dataset provided by 
the European Centre for Medium-Range Weather 
Forecasts (ECMWF) for calculation of precipitation 
and temperature in the research area (2019). Lastly, 
the multivariate ENSO index was included to highlight 
the evolution of El Niño and La Niña events which 

Table 1. In-situ data statistics for push-pull and maize monocrop fields. Average 
length, width and area of each crop type are shown, together with the minimum 
and maximum dimensions within each crop type.

Cropping type Length, m Width, m Area, m2

Push-Pull 25.5 (10–57) 13.9 (10–25) 363.9 (100–918)
Maize monocrop 21.3 (10–42) 13.7 (10–24) 295.6 (120–816)

Table 2. A summary of the collected datasets used in this study. The satellite data consists of sentinel-2, Landsat 7, Landsat 8 and 
Landsat 9 sensor data; the ground-truth vector data of the monocrop and push-pull fields were collected. Lastly, monthly climate 
assessment reports from GEOGLAM crop monitor spanning 2016–2023 period were used.

Data Product Name Resolution Spatial-Temporal Source/references

Satellite data Sentinel-2 A/B 10m 5–6 days www.corpenicus.eu.
Landsat 7 15m 16 days www.usgs.gov.
Landsat 8 15m 16 days www.usgs.gov.
Landsat 9 15m 16 days www.usgs.gov.

Vector data Monocrop and Push-Pull ground-truth data field-level single time step fieldwork
Climate data CM4EW growing season condition assessment district-level monthly https://cropmonitor.org/.

Multivariate ENSO index no spatial resolution monthly (NCAR 2022)
ERA5-Land 9km daily [C3S (2019)]
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significantly influence the weather pattern in East 
Africa (NCAR 2022).

2.3. Methods

The study follows a 4-step methodological workflow: 
(i) growing season condition estimation: it focuses on 
synthesizing monthly regional climate and growing 
season assessment reports into a single, consistent 
growing season condition overview from 2016 to 
2023; (ii) satellite data pre-processing: it is centered 
around satellite data pre-processing for phenological 
metrics extraction; (iii) phenological metrics extrac-
tion: it utilizes a dense harmonized NDVI timeseries 
to retrieve the phenological metrics of the maize 
monocrop and Push-Pull intercrop fields in the study 
area; and, (iv) statistical analysis of the impacts of 
climate conditions on crop phenology: the phenolo-
gical outputs of sections 2 and 3 are compared with 
the reported growing season conditions from sec-
tion 1.

2.3.1. Growing season condition estimation
The reports gathered from the GEOGLAM Crop 
Monitor for Early Warning database were synthesized 
to get an accurate depiction of the crop conditions 
during the timeframe of this study. A special focus 
was given on the identification and timing of extreme 
hot, dry, or wet conditions, desert locust, FAW, and 
delayed onset of the season. Growing seasons which 
contained these conditions during the majority of the 
season were categorized having stress-induced grow-
ing conditions, while growing seasons with reportedly 
good conditions were categorized as having favour-
able growing conditions. The timing and cause of 
stress-induced growing conditions were cross- 
referenced with additional scientific publications 
where available.

2.3.2. Satellite data pre-processing
The pre-processing of satellite data followed the 
methodological workflow presented in Liepa et al. 
(2024). Several pre-processing steps were performed 
to obtain a dense cloud-free and cloud shadow-free 
time series data set spanning the years 2016 to 2023. 
The image collections of Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+), Landsat 8 and 9 
Operational Land Imager (OLI), and Sentinel-2 
Multispectral Instrument (MSI) were filtered for our 

study area and the study duration using general spa-
tial and temporal filtering methods in Google Earth 
Engine (GEE) (Gorelick et al. 2017). Top-of- 
Atmosphere (TOA) data collections were selected, 
and the Sensor Invariant Atmospheric Correction 
(SIAC) was applied (Yin, Lewis, and Gómez-Dans  
2022). Utilizing the same atmospheric correction 
method on imagery from different sensors allowed 
us to minimize the discrepancies in atmospheric 
effects exerted on the satellite imagery. Masking 
cloud and cloud shadow was performed subse-
quently. Quality Assessment (QA) bands generated 
from the CFMASK algorithm (Qiu, Zhu, and He 2019; 
Zhu, Wang, and Woodcock 2015) were used to 
remove pixels containing cloud contamination in the 
Landsat sensors. Cloudy pixels in Sentinel-2 were 
masked using the cloud probability band with the 
probability value set to less than 25%. Pre- 
processing was concluded by addressing the different 
solar and view angles associated with satellite sen-
sors, by applying a Bi-directional Reflectance 
Distribution Function (BRDF) correction (Claverie 
et al. 2018; Roy et al. 2016, 2017). This allowed us to 
adjust the viewing and illumination angles of the 
satellite imagery. The BRDF correction was executed 
in the GEE cloud computing environment (Nguyen 
et al. 2020; Poortinga et al. 2019).

2.3.3. Phenological metrics extraction
The dense NDVI time series was generated by harmo-
nizing Sentinel-2 A/B, Landsat 7, Landsat 8 and Landsat 
9 satellite imagery (Liepa et al. 2024). A harmonic curve 
was fitted on the NDVI time series to smoothen the 
observed data and cubic interpolation was applied for 
gap filling purposes as proposed and implemented in 
Google Earth Engine (GEE) by Descals et al. (2020). 
A thresholding method was used to estimate the key 
growing season parameters; start of season (SoS), end 
of season (EoS) and duration of the season (DoS) 
(Descals et al. 2021; Standfuß et al. 2022; Vrieling, 
Leeuw, and Said 2013). The NDVI ratio was used for 
setting the threshold value (White, Thornton, and 
Running 1997). The ratio was calculated using the 
absolute maximum and minimum values of the NDVI 
during each growing season. The start of season (SoS) 
and end of season (EoS) are denoted as the first and 
last days when the NDVI time series of a pixel exceeds 
the local 50%-threshold (White et al. 2009). The dura-
tion of season is calculated by subtracting the date of 
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the EoS by the date of the SoS. In addition to the 
before mentioned phenological metrics, the maximum 
vegetation was captured by extracting the maximum 
NDVI value during each growing season. The pheno-
logical extraction was applied on a pixel-by-pixel basis 
and aggregated for each agricultural field.

2.3.4. Statistical analysis of the impacts of climate 
conditions on crop phenology
We investigated the significance of the impacts of 
climate conditions on crop phenology by applying 
the Welch Two Sample t-test (Welch 1947). This 
method allowed us to determine whether the crop 
phonologies derived for the two agricultural systems 
have significant differences. This test maintains nom-
inal type 1 error rates for groups with unequal sample 
sizes and should thus produce a more robust statis-
tical analysis. For the t-test, we rejected the null 
hypothesis of no significant difference at an error 
probability of 0.1.

3. Results

3.1. Growing season conditions

A graphical summary of the crop conditions from 
2016 to 2023 is shown in Figure 2. Southwestern 
Kenya where the study region is situated experi-
ences more favorable agricultural conditions in con-
trast to other parts of Kenya. The proximity to Lake 
Victoria makes the area more resilient to prolonged 
dry spells and extensive heat episodes. 
Nevertheless, this area is not immune to adverse 
climate and periodically experiences poor, climate- 
driven agricultural periods. The short growing sea-
son in 2016 was affected by delayed onset of rainfall 
leading to dry conditions in October and November 
(GEOGLAM Crop Monitor 2017a). Additionally, first 
instances of non-native fall armyworm in the 
research area were reported (GEOGLAM Crop 
Monitor 2017b). Delayed rainfall conditions were 
documented in the subsequent short growing sea-
son of 2017 as well (GEOGLAM Crop Monitor 2017c). 
Following mostly favorable short and long growing 
seasons in 2018, the substantial rainfall deficits 
returned in 2019. February and March of 2019 regis-
tered up to 75% below-average cumulative rainfall 
which drastically delayed crop planting in the area 
(GEOGLAM Crop Monitor 2019). These significantly 

drier and hotter conditions were driven primarily by 
the weak El Niño-Southern Oscillation (ENSO) con-
ditions. A year later, the Indian Ocean Dipole (IOD) 
reversal enhanced rainfall in East Africa, causing 
flooding in several counties in southwestern Kenya 
(GEOGLAM Crop Monitor 2020). Above-average 
rainfall caused an increase in vegetation even in 
areas with previously sparse vegetation providing 
favorable conditions for desert locust breeding 
(Wang et al. 2021). Ultimately, this led to the worst 
Desert Locust outbreak in East Africa in 25 years.

The most recent challenge came at the end of 
the year 2021 when delayed rainfall and below- 
average cumulative precipitation resulted in dimin-
ished yields in the 2021 short rainy season. The unfa-
vorable conditions persisted during the subsequent 
long growing season at the beginning of 2022, which 
suffered greatly from unpredictable rains and exten-
sive dry spells (GEOGLAM Crop Monitor 2021). To 
make matters worse, an African armyworm invasion 
in late April 2022 caused extensive damage to crop 
fields and added additional stress to an already vul-
nerable agricultural region (GEOGLAM Crop Monitor  
2022).

3.2. Phenological metrics of the in-situ fields

The growing season durations of maize monocrop 
and Push-Pull classes through the period of the 
study are shown in Figure 3. Maize monocrop and 
Push-Pull have very similar growing season duration 
averages with a few exceptions being the 2018 long 
growing season, the 2018 short growing season, the 
2020 short growing season and the 2021 short grow-
ing season. Here, the growing seasons are longer in 
the Push-Pull fields by about a week. The growing 
seasons appear to be slightly longer for both agricul-
tural systems during the weak positive ENSO condi-
tion between mid-2018 and 2020 (Figure 2). Mean 
and standard deviation values of growing season 
duration and maximum NDVI are shown in 
Appendix C.

Push-Pull fields recorded the highest maximum 
NDVI averages on 11 of the total 15seasons 
(Figure 4). During the long growing seasons of 2016 
and 2017 as well as during the short growing season 
of 2017 and 2018 the monocrop class showed the 
highest NDVI averages. However, the biggest differ-
ence between monocrop and Push-Pull intercrop in 
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Figure 2. Graphical depiction of the growing season conditions between 2016 and mid-2023 for the study area based on monthly 
GEOGLAM Crop Monitor assessments. Multivariate ENSO index (NCAR 2022) is depicted with negative (red) and positive (green) 
phases indicating El Niño and La Niña events respectively. Monthly temperature and precipitation data acquired from ERA5-land 
dataset (2019) together with the long-term mean in red.
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the context of maximum NDVI does not appear dur-
ing these seasons. The biggest discrepancy is 
observed during the short growing seasons of 2016 
and 2022 where Push-Pull intercrop showed higher 
maximum NDVI values by 0.5 and 0.4, respectively. 

Interestingly, the biggest discrepancies occur during 
the short growing seasons which are known to experi-
ence less predictive and more sporadic rains.

The growing seasons since 2022 have shown con-
sistently low maximum NDVI values for all classes. The 

Figure 3. Growing season duration violin plots for maize monocrop and push-pull intercrop classes derived using the harmonized 
sentinel-2 and Landsat product. Maize monocrop class is depicted in green and the push-pull intercrop is visible in blue. Black dot 
indicates the mean value of each class. Seasons with stress-induced growing conditions are depicted by yellow boxes and are based 
on Figure 2.

Figure 4. Growing season maximum NDVI violin plots for each growing season derived using the harmonized sentinel-2 and Landsat 
product. Maize monocrop class is depicted in green and the push-pull intercrop is visible in blue. Black dot indicates the mean value of 
each class. Seasons with stress-induced growing conditions are depicted by yellow boxes and are based on Figure 2.
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same is partially reflected in the duration of the sea-
sons as both maize monocrop and Push-Pull have 
recorded short growing season durations since 2022 
(Figure 3).

3.3. Effects of climatic forcings on push-pull and 
monocrop fields

The growing conditions were unfavorable in two of 
the four seasons with the most difference in seasonal 
duration (Figure 5). This was due to the desert locust 
outbreak (2020 short season) in combination with the 
fall armyworm and delayed rainfall, and below- 
average precipitation (2021 short season). Here, Push- 
Pull fields recorded longer growing season duration 
than its monocrop counterparts. During the growing 
seasons with favorable environment, Push-Pull and 
maize monocrop fields had very even growing season 
lengths with one exception being 2018 long where 
Push-Pull agricultural cycle lasted 97 days in contrast 
to 88 days of maize monocrop.

In four periods where monocrop fields had longer 
growing seasons, two of the periods had unfavorable 
climatic conditions caused by delayed rainfall (2017 
short season) and drought (2019 long season). The 
average day difference recorded was 1 and 3 days, 
respectively. Favorable growing conditions were 
registered during the season with the largest 
negative day difference between Push-Pull and 
Monocrop (2021 long season). This is also the only 
season with statistical analysis indicating a significant 
difference in duration of season with a p-value of 
0.034. The p-values of the Welch Two Sample t-test 
for all growing seasons and phenological metrics are 
presented in the Appendix D.

Highest maximum NDVI differences were recorded 
during the short growing seasons coinciding with 
unfavorable growing conditions (Figure 6). The 2016 
short and 2021 short growing seasons featured unfa-
vorable growing conditions caused by fall armyworm 
outbreaks, the pest against which the Push-Pull agri-
cultural concept was developed to combat. The 
p-values of 0.034 and 0.013, respectively, support 
the significant difference in maximum NDVI differ-
ence for the short growing seasons of 2016 and 
2021. The short growing season of 2017 featured 
delayed rainfall. With the p-value of 0.367, the 
maxNDVI difference for this season is not supported 
by the statistical analysis. Among the seasons with the 

highest maxNDVI differences, the short season of 
2022 (p-value of 0.005) appears to be the only one 
occurring during favorable growing conditions.

Both agriculture types show some degree of effect 
by climatic forcings in terms of start and end of grow-
ing season (Figure 7). During the short rain seasons of 
2016, 2017, 2020 and 2021 which featured stress- 
induced growing conditions, the end of season 
occurred considerably earlier in both agricultural sys-
tems. The same is not apparent during the long rainy 
seasons where the seasons with stress-induced con-
ditions (years 2019, 2020 and 2022) show later onset 
and end of the season. Long growing seasons of 2019 
and 2022 recorded substantially late onsets for both 
cropping systems with seasonal onsets starting at the 
end of April to beginning of May. These recordings 
correspond with documented considerable rain defi-
cits and delayed onset of seasonal rains.

Inter-class comparison shows that the start of sea-
son for maize monocrop and Push-Pull show signifi-
cant differences during the 2017 and 2020 short rainy 
seasons, and the long rainy seasons of 2019 and 2020. 
These seasons feature stress-induced growing condi-
tions. Weather induced unfavorable growing condi-
tions produced significant seasonal onset difference 
between maize monocrop and Push-Pull agriculture. 
The difference in the end of seasons between the two 
agricultural classes is significant during the 2016 and 
2022 short rainy seasons, and the long rainy seasons 
of 2016 and 2023. Of these four seasons, only the 
short rainy seasons possessed stress-induced growing 
conditions. This indicates that the end of the growing 
season is influenced by fall armyworm and delayed 
rainfall.

Stable conditions with little to no difference 
between start and end of growing seasons are regis-
tered in favorable growing settings as well. Push-Pull 
fields in general show a later end of season, however 
the difference is not significant.

4. Discussion

4.1. Climatic condition assessment

The synthesis of the climatological assessment 
reports from GEOGLAM provided an overview of 
weather conditions in the research area. This allowed 
us to determine whether the growing conditions 
were favorable or stress-induced in terms of rain 
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Figure 5. Difference in seasonal durations between push-pull and monocrop classes. The positive values in green indicate seasons 
during which the push-pull crop type observed longer seasonal duration average. The negative values in red indicate the seasons 
where push-pull showed shorter seasonal duration average.

Figure 6. Difference in seasonal maximum NDVI between push-pull and monocrop classes. The positive values in green indicate 
seasons where push-pull class observed on average higher maxNDVI values. Higher NDVI values have been observed during all 
growing seasons except 2017 long season where NDVI values were equal.
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timing and intensity as well as temperature and biotic 
stresses. The literature review revealed that 7 out of 
the total 15 growing seasons had stress-induced 
growing conditions which may have exerted unfavor-
able conditions on the crops in the research area. The 
outputs of GEOGLAM reports in the area are consis-
tent with other assessments. The rainfall anomalies of 
October to December 2016 and first outbreaks of fall 
armyworm were highlighted by Uhe et al. (2018) and 
Groote et al. (2020) respectively. Rain deficits of the 
2019 and the 2022 long growing seasons and delayed 
onset of the 2017 short season were also reported 
(Funk et al. 2022; Han et al. 2022; Harrison and Way- 
Henthorne 2019). Excessive rainfall which caused 
flooding and subsequent crop failures of 2020 were 
mentioned in a large meteorological study by 
Wainwright et al. (2021). A desert locust outbreak 
exerted additional stress to crops in the end of 2020 

(Kimathi et al. 2020; Mullié et al. 2023). Lastly, the 
most recent event of 2021/2022 resulting in adverse 
effects on agriculture inflicted by reappearance of the 
fall armyworm, delay in rainfall and below-average 
rain totals were documented in several studies (Funk 
et al. 2022; Kansiime, Rwomushana, and Mugambi  
2023; Mutyambai et al. 2022). Overall, these studies 
confirm the climate conditions assumed here on the 
basis of GEOGLAM reports.

4.2. Seasonal phenological metrics estimation

Using the harmonized dataset of Landsat 7, 8, 9, and 
Sentinel-2 together with the NDVI-based thresholding 
method allowed us to extract phenological metrics of 
maize monocrop and Push-Pull intercrop fields. This 
marks the first attempt in comparing traditional agri-
culture with agricultural systems featuring applied 

Figure 7. Start of season (SoS) in brighter colors and end of season (EoS) in darker colors for each class during the study period derived 
using the harmonized sentinel-2 and Landsat product. Maize monocrop class is depicted in green, push-pull intercrop is visible in blue. 
Black dot indicates the mean value of each class and seasons with stress-induced growing conditions are depicted by yellow boxes 
and are based on Figure 2.
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ecological management strategies based on earth 
observation data. For reference on the seasonal tim-
ing, we planned the ground truth data gathering 
campaign during the early stage of 2023 long grow-
ing season. Field observations gave us a clear timing 
on the start of the growing season. Farmer interviews 
added further knowledge on the growing status and 
anticipated harvest. The monthly assessments from 
GEOGLAM CM4EW were additional sources used for 
the seasonal timing reference. Based on these 
sources, our phenology extraction method could be 
fine-tuned.

The phenology extraction method allowed us to 
retrieve the start, peak, duration and end of each 
growing season. The descriptive ability of the pheno-
logical metrics is not uniform. In terms of capturing 
the changes in phenology driven by climatic forcings 
between the monocrop and Push-Pull agricultural 
classes, maximum NDVI provided most descriptive 
value (Liepa et al. 2024). This is not surprising as 
maximum NDVI targets the detection of vegetation 
productivity in turn shedding light on the health of 
plants in a field. In contrast, the duration of season 
showed minimal difference between monocrop and 
Push-Pull agriculture. This can be attributed to the 
farming practices, as the farmers tend to clear the 
fields toward the end of the season regardless of the 
crop yield. Even in crop failure during the early stages 
of the season, the plants remain in the fields as 
removal of them can lead to soil degradation and 
less moisture retention. This impacts the descriptive 
ability of the end of season metric as well (Liepa et al.  
2024). Little change was detected between classes in 
terms of start of the season since both agricultural 
types exhibited similar onsets of the season through-
out the study period.

The harmonization performance was analyzed on 
10-m resolution by resampling the Landsat imagery. 
By following the pre-processing steps outlined in Liepa 
et al. (2024), the rescaling prevented loss of data qual-
ity. The combined use of Landsat and Sentinel-2 pro-
vided a cloud-free image for each pixel every three to 
four days. The use of the Sentinel-2 constellation alone 
would provide a revisit time of five days prior to cloud 
and cloud shadow masking. Thus, inclusion of the 
Landsat sensors greatly increases the temporal cover-
age of the target areas.

A noteworthy constraint of the methodology is the 
relatively small sample size. While the Push-Pull 

intercrop is now a widely employed cropping practice 
in Kenya, there are very few fields that have been 
cultivated throughout the duration of the study. This 
renders the comparison of the climatic impacts on 
Push-Pull intercrop and conventional maize mono-
crop. The sample size also has an effect on the results 
of statistical significance. A small sample size 
decreases the power of the statistical tests by increas-
ing the risk of Type II errors, making the true effects 
difficult to detect. This might explain the misalign-
ment between observed notable differences in phe-
nological metrics and the statistical significance 
outlined in section 3.3

4.3. Relationship between the phenological metrics 
and seasonal climatic forcings

Differences between maize monocrop and Push-Pull 
intercrop fields were at their peak during periods of 
biotic stresses in the area. These were caused by 
desert locust (2020 short season) and fall armyworm 
(2016 short, 2021 short and 2022 long seasons). The 
FAW outbreaks were accompanied by delayed and 
below-average rainfall in all three seasons. 
Interestingly, the first outbreak of the fall armyworm 
recorded in the 2016 short season showed similar 
difference in maximum NDVI values, but the duration 
of the season difference was less profound. This 
shows that the response of these two agricultural 
systems to biotic stresses is not always the same 
from a remote sensing perspective. Such behavior 
can have several explanations, including transient on- 
farm farmer mitigative interventions and model per-
formance. As the 2016 short season saw the first 
recorded outbreak of FAW in the area, farmer inter-
vention via pesticide or fertilizer use could have 
deviated from later outbreaks. From the modeling 
perspective, less EO data further back in time might 
have impacted the harmonization efforts leading to 
diminished phenology extraction accuracy.

The biggest discrepancies between the two agri-
cultural systems occurred mainly during the short 
growing season between the October and 
December months. Unlike the rains during the long 
growing season, rainfall in the period of October to 
December is more unpredictable which can cause 
issues with crop planting for farmers. Having Push- 
Pull outperforming maize monocrop during short 
growing seasons may indicate a higher adaptive 
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capability of Push-Pull intercropping. This is further 
supported by a study based on household surveys in 
the research area by Ndayisaba et al. (2023). The 
research found that under rainfall-deficit periods 
Push-Pull agriculture yielded more maize than its non- 
push-pull counterpart. Higher climate resilience was 
also recorded in Ethiopia by Gugissa, Abro, and Tefera 
(2022) highlighting that the findings are not site- 
specific.

4.4. Future research and outlooks

The current study emphasizes changes in precipita-
tion and temperature as direct effects of climate 
change on agriculture. In the context of the perfor-
mance of Push-Pull and non-Push-Pull agriculture 
under future climate, it is important to note additional 
influences such as below-ground processes 
(Rosenzweig et al. 2001; Ziska and McConnell 2016), 
soil nutrients and organic matter (Chen et al. 2020; Lu 
et al. 2013) and soil microbial biomass (Classen et al.  
2015). Our research demonstrates the added value of 
earth observation tools in agricultural monitoring of 
small-scale agriculture in East Africa. Because of this, 
adaptation strategies should consider the combined 
scientific outputs spanning several research disci-
plines including earth observation. Such future ecolo-
gical management strategies should also seek to 
meet various farmer needs and priorities including 
dietary diversity and address other constraints to 
ensure value addition and scaling (Chidawanyika 
et al. 2023). For the Push-Pull, the innovative 
approach has evolved over the years from the con-
ventional to climate smart and later the 3rd genera-
tion Push-Pull technology to address both biotic and 
abiotic constraints (Cheruiyot et al. 2021). This has 
ensured wider adoption of the Push-Pull, even to 
much more arid regions based on context-specific 
companion cropping. More recently, the Push-Pull 
has been further intensified by integration with vege-
tables and edible legumes (Chidawanyika et al. 2023). 
This approach not only helps in building resilience, 
but also support scaling through bundled benefits 
that address various needs.

The study also shows that an area-wide EO-based 
monitoring system has the potential to systematically 
monitor and evaluate the acute situation of agricul-
tural production. To fully understand the capabilities 
of such methodologies, future research should focus 

on transferability of the method to other regions 
featuring different pest and climate profiles.

5. Conclusion

This study marks the first attempt in comparing tradi-
tional maize cropping with agricultural systems fea-
turing applied ecological management strategies 
based on earth observation and in situ data. Our 
study concludes with the following findings:

(i) Climate assessment of the area based on avail-
able climatological resources shows that 7 out 
of 15 growing seasons experienced unfavorable 
growing conditions between the years 2016 and 
2023. These were caused by climatic factors, 
pest outbreaks or a combination of both.

(ii) Our research introduces a temporal element in 
agricultural monitoring by harmonizing Landsat 
7, 8, 9 with Sentinel-2 spanning the duration of 
the study. In doing so, phenological metrics of 
the growing seasons are extracted based on 
a threshold method using the NDVI as 
a vegetation proxy. The comparison reveals 
that inter-class differences exist and are detect-
able using earth observation tools.

(iii) The impact of regional climatic forcings on the 
two agricultural systems was most severe dur-
ing periods of biotic stresses caused by desert 
locust outbreak and fall armyworm. Higher 
values in both duration of the season and max-
imum NDVI indicated a higher resilience by 
Push-Pull agriculture in times of unfavorable 
agricultural conditions. Start and end of grow-
ing seasons for both cropping systems show 
similar responses to weather. Short rainy sea-
sons with unfavorable growing conditions 
resulted in an earlier end of season. Long grow-
ing seasons with unfavorable conditions 
brought about delayed growing season start 
and ends.

Our research demonstrates the potential of earth 
observation tools in agricultural monitoring. 
Unpredictability in the future climate and forecasted 
increase in abrupt temperature and rainfall variations 
will influence the planting patterns and growing con-
ditions of crops. Future management strategies 
should consider the combined scientific outputs 
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spanning several research disciplines including earth 
observation to enhance the adaptive capacity and 
resilience of cropping systems.
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