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a b s t r a c t

Traditional occupancy–abundance and abundance–variance–occupancy models do not take into account
zero-inflation, which occurs when sampling rare species or in correlated counts arising from repeated
measures. In this paper we propose a novel approach extending occupancy–abundance relationships to
zero-inflated count data. This approach involves three steps: (1) selecting distributional assumptions and
parsimonious models for the count data, (2) estimating abundance, occupancy and variance parameters
as functions of site- and/or time-specific covariates, and (3) modelling the occupancy–abundance rela-
tionship using the parameters estimated in step 2. Five count datasets were used for comparing standard
Poisson and negative binomial distribution (NBD) occupancy–abundance models. Zero-inflated Poisson
(ZIP) and zero-inflated negative binomial (ZINB) occupancy–abundance models were introduced for the
first time, and these were compared with the Poisson, NBD, He and Gaston’s and Wilson and Room’s
abundance–variance–occupancy models. The percentage of zero counts ranged from 45 to 80% in the
datasets analysed. For most of the datasets, the ZINB occupancy–abundance model performed better
than the traditional Poisson, NBD and Wilson and Room’s model. He and Gaston’s model performed bet-
ter than the ZINB in two out of the five datasets. However, the occupancy predicted by all models increased
faster than the observed as density increased resulting in significant mismatch at the highest densities.
Limitations of the various models are discussed, and the need for careful choice of count distributions
and predictors in estimating abundance and occupancy parameter are indicated.

© 2009 Published by Elsevier B.V.

1. Introduction

A positive occupancy–abundance and abundance–variance
relationship has been widely documented, both intra- and inter-
specifically, at a range of spatial scales for a diverse array of animal
and plant species (Brown, 1984; Gaston et al., 2000, 2006; He et al.,
2002; Taylor, 1961). Since the first comprehensive treatment of the
occupancy–abundance relationship (Brown, 1984), it has become a
general mathematical expectation that the occupancy–abundance
relationship will always be positive, although occasional zero and
negative correlations have been reported (Gaston et al., 2000;
Wilson, 2008). This relationship has received particular attention
in the context of meta-population dynamics, conservation biology,
agricultural entomology and epidemiology (Anderson and May,
1985; Gaston et al., 2006; Wilson and Room, 1983).

A suite of empirical and theoretical models has been
widely employed to describe the occupancy–abundance rela-
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tionship in various fields (He and Gaston, 2003). However,
most are special forms of the negative binomial distribu-
tion (NBD) occupancy–abundance model (He and Gaston,
2003). Recently, He and Gaston (2003) derived a general
abundance–variance–occupancy model by combining the
abundance–variance relationship described by Taylor’s power
law (TPL) (Taylor, 1961) and the NBD occupancy–abundance
model. The abundance–variance–occupancy model arguably has
much wider ecological significance from the perspective of pattern
unification and, as such, it may help in fundamental understanding
of spatial variation in abundance (He and Gaston, 2003). However,
this model assumes perfect detection of species, and occupancy
and abundance to be temporally and spatially invariant (He and
Gaston, 2003). In their current form, all the occupancy–abundance
models also do not take into account zero-inflation and its impacts
on estimates of abundance, variance and occupancy from count
data. Therefore, there is a need to develop more robust models that
account for zero-inflation, which may arise from various sources.

A wide range of ecological count data exhibit zero-inflation
(Cunningham and Lindenmayer, 2005; Gray, 2005; Martin et al.,
2005; Sileshi, 2006, 2008; Warton, 2005), and such data do not
readily fit standard distributions such as the NBD (Hall, 2000). Two
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types of zeros are often encountered in count data: structural zeros
which are inevitable, and sampling zeros which occur by chance.
Structural zeros consist of a large number of true zeros which
arise when presence is not tenable (Cunningham and Lindenmayer,
2005). These are caused by the real ecological effects of interest
(Martin et al., 2005). For example, the study of rare organisms
will often lead to the collection of data with a high frequency of
zeros (Welsh et al., 1996). Within almost all communities the vast
majority of species are rare. Yet such species will frequently be of
ecological, conservation or management interest in part because
they may be among the extinction-prone taxa in an assemblage
(Cunningham and Lindenmayer, 2005). Sampling zeros are random,
and arise due to sampling where conditions are potentially suitable
but absence is observed. False zeros (MacKenzie et al., 2002) occur
when the species under study is present at the time of sampling,
but the observer does not detect it because of its cryptic or secretive
nature. Therefore, for rare species with low detection probability,
excess zeroes could be substantial.

In this paper we illustrate a novel method for modelling the
occupancy–abundance relationship for species with patchy dis-
tributions and, therefore, zero-inflated count datasets. We also
propose two new occupancy–abundance models based on the
zero-inflated Poisson (ZIP) and zero-inflated negative binomial
(ZINB) distributions. We then compare these models with the
traditional occupancy–abundance models derived from the Pois-
son and negative binomial distribution (NBD), and with two
abundance–variance–occupancy models derived from Taylor’s
power law. We illustrate the use of information criteria for model
selection, and discuss the limitations of the various models.

2. Methods

2.1. The data

Five count datasets with varying levels of zero-inflation were
used in this analysis. These datasets are by no means the most rep-
resentative of zero-inflated counts. They were only used to illustrate
the analytical methods proposed in Section 2.2. The first dataset
consisted of counts of adults of the chrysomelid beetle Mesoplatys
ochroptera Stål in western Kenya. This species was monitored in two
experiments established during 1999–2000 and 2000–2001, each
consisting of three agroforestry treatments consisting of pure Ses-
bania sesban (L.) Merrill, a mixture of S. sesban and Tephrosia vogelii
Hook and S. sesban and Crotalaria grahamiana Whight & Arn. The
sites were Dudi and Khumusalaba in Butere district, Mutumbu in
Siaya district, and Lela in Kisumu district of western Kenya (Sileshi
et al., 2006). In each treatment, the abundance of M. ochroptera
was monitored on 15 randomly selected trees that were tagged
using coloured plastic strings. The numbers of adults were recorded
monthly from July to December in 1999 and 2000 on each tree. This
constituted two years of data collected on six dates of sampling for
each site and treatment. On each date, samples were taken from
the same tree, and this constituted a repeated measures dataset. The
total sample size was 2546 S. sesban trees, of which 2035 (79.9%) had
zero counts of M. ochroptera. Years, dates, sites and treatments were
used as covariates to estimate abundance parameters in Section
2.2.1.

The second dataset consisted of counts of the invasive species
Heteropsylla cubana Craw per shoot of eight provenances of the
fodder tree Leucaena leucocephala (Lam) de Wit in Tanzania. To
assess psyllid abundance, three terminal shoots with the next three
open leaves were randomly cut from three randomly selected trees
per plot. Samples were bagged in polythene bags and taken to
the laboratory where the shoots were examined under a dissect-
ing microscope and the number of psyllid nymphs per shoot was

recorded. Data were recorded on six sampling dates. The total sam-
ple size was 861 shoots, of which 403 (46.8%) had zero counts.
Sampling dates and provenances were used as covariates to esti-
mate abundance parameters in Section 2.2.1.

The third dataset consisted of counts of the curculionid beetle
Diaecoderus sp. per maize plant in eastern Zambia. Beetles were
counted on 10 randomly selected maize plants in 13 agroforestry
treatments in February 2002 and 2003. The treatments were repli-
cated four times and arranged in a randomized complete blocks
design. The total sample size was 990 plants, of which 444 (44.9%)
were zero counts. Years and treatments were used as covariates for
estimation of abundance parameters in Section 2.2.1.

The fourth dataset consisted of counts of the tenebrionid Gono-
cephalum simplex (F.) in soil monoliths from agroforestry practices
in eastern Zambia. The study areas, treatment, experimental design
and management of the experiments have been described in detail
by Sileshi and Mafongoya (2007). Sampling was conducted three
times between December 2003 and July 2004. Soil samples were
collected using a soil monolith (25 cm × 25 cm and 25 cm depth)
placed over a randomly selected spot, and driven into the soil to
ground level using a metallic mallet. Adults were hand-sorted from
the soil and counts recorded per soil monolith. The total sample
size was 542 monoliths, of which 414 (76.4%) had zero counts. Sites
and treatments were used as covariates to estimate the abundance
parameters in Section 2.2.1.

The fifth dataset consisted of counts of the leaf beetle Ootheca
bennigseni Weis in eastern Zambia. Beetles were monitored on bean
and cowpea crops in experimental fields and two nearby farmers’
fields at Msekera in February 2003. Each farm was divided into
homogenous (2 m × 2 m) plots and beetle counts were recorded on
15 and 30 plants of each of bean and cowpea plants per plot in
farmers’ field and the experimental fields, respectively. The total
sample size was 420 plants, of which 240 (68.6%) had zero counts.
Fields and crops were used as covariates to estimate parameters of
abundance in Section 2.2.1.

2.2. The modelling approach

The shape and interpretation of occupancy–abundance and
abundance–variance–occupancy relationships are subject to the
sampling scale (He et al., 2002). In practice, these relationships are
established at some sampling scale using a range of sample mean
abundance (m), variance (s2) and occupancy (po). If the sample size
is sufficiently large, m, s2 and po are assumed to approach the true
abundance (�), variance (�2) and occupancy (pp), respectively. For
clarity, sample abundance is defined as the mean density of indi-
viduals in the sampling units (habitat patches) in which a species
was recorded, and the observed occupancy as the proportion of
occupied patches. When the sampling scale changes, values of m,
s2 and po will change, and this is likely to change the model that
best fits the observed data. The computation of m, po and s2 is some-
times done without due consideration for predictors (covariates) of
�, �2 and pp. If not done according to covariates that significantly
explain these parameters, they may be biased resulting in distor-
tion of the occupancy–abundance relationship. In this paper we
propose a three-step modelling approach that will account for zero-
inflation and improve accuracy in parameter estimation. The steps
include (1) selecting distributional assumptions and parsimonious
models for the count data, (2) estimating abundance, occupancy
and variance parameters as functions of site- and/or time-specific
covariates, and (3) modelling the occupancy–abundance relation-
ship using the parameters estimated in step 2.

2.2.1. Modelling abundance
The first two steps involved analysis of the datasets described

above assuming Poisson, NBD, ZIP and ZINB, and jointly estimating
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the parameters of interest in occupancy–abundance models. The
Poisson distribution is one of the two commonly used count dis-
tributions in ecology (Gray, 2005; Sileshi, 2006, 2008). It assumes
that the observed counts have variance (�2) that is equal to the
mean (�). However, count data often exhibit over-dispersion (i.e.
�2 > �) relative to the Poisson assumption. Over-dispersion may
derive from multiple sources, including unobserved heterogeneity,
zeros in excess of those expected under a Poisson distribution and
contagion (Gray, 2005). If the Poisson distribution is used, over-
dispersion can lead to underestimation of the standard errors of
estimates and confidence intervals that are too narrow (Sileshi,
2006, 2008).

The traditional alternative to the Poisson has been the NBD,
which is a gamma mixture of Poisson responses (Gray, 2005; Sileshi,
2006, 2008). However, much controversy surrounds its dispersion
parameter (k), which goes by the name aggregation parameter,
dispersion parameter, shape parameter, clustering coefficient, etc.
Different approaches have been employed to estimate k, namely,
method of moments, extended quasi-likelihood, maximum like-
lihood, and bias-corrected maximum likelihood methods (Saha
and Paul, 2005; Lloyd-Smith, 2007). If k is not estimated accu-
rately, the resulting occupancy–abundance relationship may be
distorted.

The Poisson and NBD are inappropriate for data with many zeros
(Hall, 2000). Therefore, ZIP and ZINB distributions have been pro-
posed. These assume an unobserved or latent zero process that
augments the zeros arising from the standard Poisson and NBD
(Gray, 2005). The advantage of the ZIP and ZINB is that they pre-
dict a more realistic percentage of zeroes in count data than the
Poisson and NBD (Gray, 2005; Sileshi, 2008). In the ZIP the popu-
lation is considered to consist of two types of individuals. The first
type gives Poisson distributed counts, which might contain zeros,
while the second type always gives a zero count. The actual counts
generated from the first type (i.e. Poisson) will have a probability
1 − �, while the probability of an individual being of the second type
will be �. Therefore, � is called the “zero-inflation probability”. The
probability (P) of observing y = 0, 1, 2, . . ., n in the ZIP distribution is
(Cunningham and Lindenmayer, 2005; Martin et al., 2005):

P(Yi = yi) =

⎧⎨
⎩

� + (1 − �) exp (−�) for yi = 0

(1 − �)
exp (−�) �y

y!
for yi = 1, 2, . . . , n

(1)

with mean E(Yi = �i). The parameter of interest in the ZIP
occupancy–abundance model (Section 2.2.3) is �, which was esti-
mated here as a function of covariates in each dataset. Like the ZIP,
ZINB uses a mixture distribution that assigns a mass � to the extra
zeros and a mass 1 − � to the NBD (Martin et al., 2005; Mwalili et
al., 2008). Hence the probability of observing y = 0, 1, 2, . . ., n is

P(Yi = yi) =

⎧⎪⎪⎨
⎪⎪⎩

� + (1 − �)
1

1 + ��
for yi = 0

(1 − �)
�

(
y + 1/�

)
y!�

(
1/�

)
(

(��)y

(1 + ��)y(1 + ��)1/�

)
for yi = 1, 2, . . . , n

(2)

where � = 1/k, and k is the dispersion parameter of the NBD. ZINB
approaches the ZIP and NBD as � → ∞ and � → 0, respectively
(Mwalili et al., 2008). If both 1/� and � ≈ 0 then the ZINB reduces
to the Poisson distribution (Mwalili et al., 2008). The parameters
of interest in the ZINB occupancy–abundance model (Section 2.2.3)
are � and k, which were jointly estimated as functions of the covari-
ates in each dataset.

All data were subjected to the Poisson, NBD, ZIP and ZINB regres-
sion models. However, detailed analyses will be illustrated using the
M. ochroptera dataset as it represents a typical example of repeated
measures data with many zeros. The analysis of repeated measures
data involved inclusion of fixed effects (covariates) and a single

normally distributed random effect (u) with � = 0 and variance
ı2 (Agresti et al., 2000; Hall, 2000; Tooze et al., 2002). Random
effects are associated with individual experimental units (e.g. trees
in the case of M. ochroptera) drawn at random from a population
and govern the variance–covariance structure of the response vari-
able. Parameters of the Poisson, NBD, ZIP and ZINB models were
all estimated using the non-linear mixed effects model (NLMIXED)
procedure of SAS (Agresti et al., 2000). This procedure maximizes
the likelihood by adaptive Gaussian quadrature, which is one of the
best methods that deliver exact maximum likelihood estimation
(Pinheiro and Bates, 1995) of parameters such as � and k. Models
were fitted sequentially starting from a null (without covariates)
through single-, two- and three-variable main effects models to the
full model (all variables) (see Appendix Table A.1 for details).

For a given functional form of the count model, the deviance
explained (%D) was used as a measure of goodness-of-fit. The
deviance values of each model were compared with that of the null
model to examine what proportion of the variation in the response
was attributed to the covariates. Interpretation of results was based
mainly on the 95% confidence intervals (95% CI) of parameters. If the
95% CI includes both negative and positive values, parameters were
interpreted as not significantly different from zero. If the 95% CI
of two or more distributions (e.g. ZIP, NBD and ZINB) overlap, the
effect of distributional assumption on the parameters (e.g. � or k)
was interpreted as non-significant. Similarly, if the 95% CI of the
null and full models overlap, the effect of covariates on parameters
was interpreted as non-significant.

In the approach described here, model selection is an impor-
tant step of parameter estimation because only those parameters
estimated using a parsimonious model can produce accurate
occupancy–abundance relationships. Here, parsimony is defined
as a trade-off between bias and variance. A model with too few
parameters results in high bias in parameter estimates and an
under-fit model that fails to identify factors of importance. Too
many parameters result in high variance, and an over-fit model
with a risk of identifying spurious factors (Johnson and Omland,
2004). The traditional approach to model selection is to use a
likelihood ratio test to compare nested models. This is appro-
priate for comparing the Poisson with the NBD or the ZIP with
the ZINB as the first is nested in the second. For non-nested
models we cannot use the standard likelihood ratio test. An
appropriate approach in such cases is to use Akaike informa-
tion criterion (AIC) (Gray, 2005; Sileshi, 2006, 2008). One could
also use other criteria such as the Bayesian information crite-
rion (BIC) to compare models. However, note that AIC and BIC
arise from a more general form of information criterion (IC):
IC = −2ll + �c. If c = 0, IC is equal to the classical likelihood-ratio

statistic. If c = 1, IC is equal to the goodness-of-fit procedure based
on plotting the deviance against degrees of freedom. If c = 2, IC is
identical to AIC, and if c = log N, IC is equal to BIC. AIC (c = 2) is also
asymptotically equivalent to a cross-validation criterion (Sileshi,
2008 and references cited). Therefore, model selection was based
on AIC computed as AIC = −2ll + 2� from the log-likelihood (ll) and
number of parameters (�) estimated.

Since AIC does not take into account sample size, AICc, a small
sample bias adjustment of AIC was used. In order to compare differ-
ent models the AICc difference (�AICc) was calculated from AICc
as in Johnson and Omland (2004). This in turn allowed calcula-
tion of the relative likelihoods of the different models. Normalizing
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the relative likelihood yielded the Akaike weight (AICw), which
was used as the strength of evidence for each model relative to
other models in the set of models considered. The AICw of any
particular model varies from zero (no support) to unity (complete
support) relative to the entire set of models (Johnson and Omland,
2004).

2.2.2. Modelling the abundance–variance relationship
Abundance–variance–occupancy relationships are estab-

lished using parameters of the variance–abundance relationship
described by TPL:

�2 = ˛�ˇ (3)

Fig. 1. Plots (on logarithmic scale) of the observed variances (open circles) and variances predicted using Taylor’s power law (straight line) against the mean densities of
various insects.
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where ˛ and ˇ are estimated by fitting a least square regression
of the sample variance (s2) against the sample mean density (m)
on a logarithmic scale (Taylor, 1961). In practice, replicate count
data are obtained from a variety of conditions, times, etc., the sam-
ple variance (s2), mean (m) and occupancy (po) are computed. The
assumption is that these simple values provide an estimate of the
population variance (�2), abundance (�) and occupancy (p). In
order to illustrate the effect of covariates on these parameters, s2

and m were computed according to the different covariate models
in the datasets. However, only ˛ and ˇ values derived according to
the best abundance model (largest AICw) were used in generating
the abundance–variance–occupancy relationships in Section 2.2.3.
To that effect, the observed s2, m and po values for M. ochroptera
were computed per 15 trees, which gave a total of 91 values of s2,
m and po after discarding zero s2 and m values. For H. cubana, s2,
m and po were computed per 18 shoots (i.e. 6 dates × 3 trees per
provenance), making a total of 48 values of each. In the Diaecoderus
dataset, computation was based on 40 plants (i.e. 10 plants each
from 4 replicates per treatment), and this gave a total of 26 s2, m
and po values after discarding zero s2 and m values. In the G. sim-
plex dataset, computation was based on nine soil monoliths (i.e. 3
each from 3 replicates per treatment). A total of 42 s2, m and po val-
ues were available after dropping those with zero values. In the O.
bennigsenni dataset, s2, m and po were computed per 15 bean or 30
cowpea plants. This gave a total of 16 s2, m and po values after dis-
carding those with zero values. Then the observed variances (=s2)
and the variances predicted (�2) using Eq. (3) were plotted against
the respective m value (on a log scale) to demonstrate the agree-
ment between s2 and �2 (Fig. 1). Since log(s2) = 0 and log(m) = 0
are undefined, samples for which m = s2 = 0 or s2 = 0 but m > 0 were
removed from all datasets when computing ˛ and ˇ.

2.2.3. Modelling occupancy–abundance and
abundance–variance–occupancy relationships

These relationships were modelled by inserting the relevant
parameters estimated in Section 2.2.1, and the mean density (m)
value into the following models. Note that � was approximated by
m in all models. The predicted occupancy (pp) values of the Poisson
occupancy–abundance model were generated using the following
relationship:

pp = 1 − exp−� (4)

Similarly, pp values of the NB model were generated by insert-
ing the dispersion parameter (k) from the best NBD model into the
following equation:

pp = 1 −
(

1 + �

k

)−k

(5)

If k is infinitely large, Eq. (5) results in the Poisson model (Eq. (4)).
The ZIP occupancy–abundance model was derived from equa-

tion 1 as follows:

pp = (1 − �)
(

1 − exp−�
)

(6)

Then pp values were generated by inserting � values from the
best ZIP abundance model (Section 2.2.1) into Eq. (6). As � → 0, the
occupancy predicted by Eq. (6) approaches that of the Poisson (Eq.
(4)).

The ZINB occupancy–abundance model was derived from Eq. (2)
as follows:

pp = (1 − �)

[
1 −

(
1 + �

k

)−k
]

(7)

Table 1
Ranking of Poisson and zero-inflated Poisson (ZIP) models of M. ochroptera abundance using the explained deviance (%D) and Akaike information criteria (ACc and AICw).
Note the variation in the probability of zero-inflation (�) and their 95% confidence intervals (95% CI) with distributional assumption and covariate structure.

Model �a %D AICc AICw � (95% CI)

Poisson Null 2 0.0 5289 <0.01 NA
Site 3 0.2 5282 <0.01 NA
Treatment 3 0.2 5279 <0.01 NA
Date 3 0.3 5277 <0.01 NA
Date + site 4 0.4 5273 <0.01 NA
Site + treatment 4 0.4 5271 <0.01 NA
Date + treatment 4 0.5 5266 <0.01 NA
Date + site + treatment 5 0.6 5261 <0.01 NA
Year + date + site 5 2.4 5167 <0.01 NA
Year + date 4 2.4 5166 <0.01 NA
Year + site 4 2.4 5165 <0.01 NA
Year 3 2.4 5164 <0.01 NA
Year + date + site + treatment 6 2.7 5155 0.10 NA
Year + date + treatment 5 2.7 5154 0.17 NA
Year + site + treatment 5 2.7 5153 0.28 NA
Year + treatment 4 2.7 5152 0.45 NA

ZIP Null 3 0.0 5104 <0.01 0.71 (0.67–0.74)
Treatment 5 0.2 5097 <0.01 0.66 (0.61–0.71)
Date 5 0.3 5093 <0.01 0.73 (0.68–0.79)
Date + treatment 7 0.5 5085 <0.01 0.69 (0.63–0.76)
Site 5 0.8 5067 <0.01 0.73 (0.69–0.77)
Site + treatment 7 1.0 5060 <0.01 0.68 (0.63–0.74)
Year 5 2.2 4999 <0.01 0.62 (0.57–0.66)
Year + date 7 2.3 4997 <0.01 0.59 (0.59–0.67)
Year + treatment 7 2.4 4990 <0.01 0.56 (0.50–0.62)
Year + date + treatment 9 2.5 4989 <0.01 0.54 (0.45–0.63)
Date + site 7 2.4 4988 <0.01 0.80 (0.73–0.87)
Date + site + treatment 9 2.8 4974 <0.01 0.70 (0.59–0.82)
Year + site 7 2.8 4968 <0.01 0.60 (0.54–0.66)
Year + site + treatment 9 3.1 4960 <0.01 0.54 (0.47–0.61)
Year + date + site 9 5.6 4833 <0.01 0.63 (0.50–0.76)
Year + date + site + treatment 11 5.8 4817 1.00 0.49 (0.33–0.66)

The model in bold face is the best estimator of the parameters. NA = not applicable.
a � is the total number of parameters estimated in each model including ˛i , ˇi , and �.
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Then the pp values were generated by inserting � and k values from
the best ZINB abundance model into Eq. (7). Note that as � → 0, the
occupancy predicted by Eq. (7) approaches that of the NBD (Eq. (5)).

The pp values of He and Gaston’s (2003) model were generated
by inserting �2 values estimated using Eq. (3) into the following
equation:

pp = 1 −
(

�

�2

)�2/�2−�

(8)

The pp values of Wilson and Room’s (1983) model were gener-
ated by inserting ˛ and ˇ values estimated using Eq (3) into the
following equation:

pp = 1 − exp−�(ln(a�b−1)(a�b−1−1)
−1

) (9)

The agreement between the fitted (pp) and observed (po) occu-
pancy across the whole range of mean densities was graphically
evaluated by plotting pp and po against the respective m values.
The agreement between po and pp predicted by the different models
was also statistically tested using a linear regression. Here, po values
were used as the dependent and pp values as the independent (x)
variables (Piñeiro et al., 2008). If the model under consideration pre-
dicts occupancy consistently across all mean densities, the resulting
regression line will have a constant slope (ˇ = 1). If it predicts occu-
pancy without bias the regression line will have zero intercept
(˛ = 0). Deviation from this conditions was judged by examination
of the 95% CI of ˇ and ˛. Model fit was also evaluated using the
R2 and predicted residual sum of squares (PRESS). The smaller the
PRESS value, the better is the agreement between the observed and
predicted values. When several models are compared, model like-
lihood is more informative than model fit. Therefore, the Akaike

weight (AICw) was used to evaluate the relative support for each
model. For a model with a given number of predictors based on a
normal regression, the log-likelihood is −0.5n(ln(2�) + (RSS/n) + 1).
Following Gagné and Dayton (2002), AIC was calculated from the
residual sum of squares (RSS), the number of parameters (�) esti-
mated and the sample size (n):

AIC = n
(

ln
(

RSS
n

))
+ 2(�) (10)

In all cases the slope and intercept were the only parameters
estimated (hence � = 2), and n was equal to the number of pairs of
occupancy (pp and po) values. For ach model, AICw was computed
as described in Section 2.2.1.

3. Results

3.1. Effect of distributional assumptions and model choice on
parameter estimates

The count distribution model used and covariates in that model
had significant effects on the explained deviance. According to the
AIC, the ZIP and ZINB abundance models were superior to the
standard Poisson and NBD models (Tables 1 and 2). However, the
covariates included in each model explained only a small portion of
the explained devaince (%D < 10) (Tables 1 and 2). Among the range
of M. ochroptera abundance models considered under the Poisson,
NBD, ZIP and ZINB distributions, those ranked first accounted for
only 2.7, 2.0, 5.8 and 6.6% of the explained deviance, respectively
(Tables 1 and 2). Models of Diaecoderus abundance accounted for
3–12.3% of the explained deviance. In the case of H. cubana and G.

Table 2
Ranking of negative binomial distribution (NBD) and zero-inflated negative binomial (ZINB) models of M. ochroptera abundance using the explained deviance (%D) and Akaike
information criteria (ACc and AICw). Note the variation in the probability of zero-inflation (�) and dispersion parameter (k) estimates and their 95% CI with distributional
assumption and covariate structure.

Nested model �a %D AICc AICw � (95% CI) k (95% CI)

NBD Null 3 0.0 5138 <0.01 NA 10.8 (9.3–12.3)
Treatment 4 0.0 5138 <0.01 NA 10.6 (9.1–12.1)
Date 4 0.5 5116 <0.01 NA 10.9 (9.4–12.3)
Date + treatment 5 0.6 5113 <0.01 NA 10.7 (9.3–12.2)
Site 4 0.6 5109 <0.01 NA 10.9 (9.4–12.3)
Site + treatment 5 0.7 5108 <0.01 NA 10.7 (9.3–12.1)
Date + site 5 0.7 5105 <0.01 NA 10.8 (9.4–12.2)
Date + site + treatment 6 0.8 5102 <0.01 NA 10.7 (9.2–12.1)
Year + date 5 1.9 5046 0.01 NA 9.3 (7.9–10.6)
Year 4 1.8 5046 0.01 NA 9.2 (7.9–10.6)
Year + date + site 6 2.0 5045 0.02 NA 9.3 (7.9–10.6)
Year + site 5 1.7 5044 0.04 NA 9.3 (7.9–10.6)
Year + date + site + treatment 7 2.0 5043 0.06 NA 9.9 (8.8–11.1)
Year + treatment 5 1.9 5042 0.10 NA 9.1 (7.7–10.5)
Year + date + treatment 6 2.0 5040 0.28 NA 9.1 (7.8–10.5)
Year + site + treatment 6 2.0 5039 0.46 NA 9.1 (7.7–10.5)

ZINB Null 4 0.0 5107 <0.01 0.73 (0.70–0.76) 0.3 (−0.3–0.8)
Treatment 6 0.2 5100 <0.01 0.69 (0.64–0.73) 0.3 (−0.3–0.8)
Date 6 0.4 5093 <0.01 0.74 (0.68–0.79) 0.3 (−0.3–0.9)
Date + treatment 8 0.6 5086 <0.01 0.70 (0.63–0.76) 0.3 (−0.3–0.8)
Site 6 0.8 5068 <0.01 0.73 (0.69–0.77) 0.2 (−0.2–0.6)
Site + treatment 8 1.1 5061 <0.01 0.68 (0.63–0.74) 0.2 (−0.2–0.6)
Year 6 2.2 5000 <0.01 0.65 (0.61–0.69) 0.3 (−0.2–0.8)
Year + date 8 2.3 4998 <0.01 0.60 (0.51–0.69) 0.3 (−0.4–0.9)
Year + treatment 8 2.4 4992 <0.01 0.60 (0.54–0.65) 0.3 (−0.2–0.8)
Year + date + treatment 10 2.6 4989 <0.01 0.55 (0.45–0.64) 0.3 (−0.4–0.9)
Year + site 8 2.9 4969 <0.01 0.60 (0.54–0.66) 0.2 (−0.3–0.7)
Year + site + treatment 10 3.1 4961 <0.01 0.54 (0.47–0.61) 0.2 (−0.3–0.9)
Date + site 8 3.8 4919 <0.01 0.70 (0.57–0.82) 6.3 (3.3–5.8)
Date + site + treatment 10 4.1 4909 <0.01 0.52 (0.33–0.71) 6.1 (4.8–7.3)
Year + date + site 10 6.3 4797 <0.01 0.50 (0.33–0.68) 4.6 (3.3–5.8)
Year + Date + site + treatment 12 6.6 4786 1.00 0.33 (0.12–0.53) 4.3 (3.1–5.6)

The model in bold face is the best estimator of the parameters. NA = not applicable.
a � is the number of parameters estimated in each model including ˛i , ˇi , � and k.
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Table 3
The effect of distributional assumptions and covariates on the zero-inflation probability (�) and the dispersion parameter (k) in counts of Diaecoderus sp., Heteropsylla cubana,
Gonocephalum simplex and Ootheca bennigseni. The null model has no covariates (intercept only), while the best model is the one with the highest likelihood according to the
AICw.

Species Distribution Model � (95% CI) k (95% CI)

Diaecoderus sp. NBD Null NA 1.7 (1.5–2.0)
Best NA 1.4 (1.2–1.6)

ZIP Null 0.42 (0.39–0.45) NA
Best 0.34 (0.27–0.41) NA

ZINB Null 0.05 (−0.16–0.26) 1.6(0.8–2.3)
Best 0.00001 (−0.001–0.001) 1.0 (0.8–1.2)

H. cubana NBD Null NA 5.1 (4.6–5.7)
Best NA 4.9 (4.4–5.5)

ZIP Null 0.47 (0.44–0.50) NA
Best 0.45 (0.37–0.53) NA

ZINB Null 0.07 (−0.17–0.31) 4.5 (2.5–6.6)
Best 0.004 (−0.01–0.02) 4.0 (3.3–4.7)

G. simplex NBD Null NA 1.7 (1.5–2.0)
Best NA 1.4 (1.2–1.6)

ZIP Null 0.71 (0.66–0.75) NA
Best 0.50 (0.32–0.68) NA

ZINB Null 0.00004 (−0.001–0.001) 3.0 (0.7–5.2)
Best 0.05 (−0.17–0.26) 4.3 (3.0–5.5)

O. bennigseni NBD Null NA 4.2 (3.1–5.3)
Best NA 1.7 (1.2–2.2)

ZIP Null 0.67 (0.62–0.72) NA
Best 0.002 (−0.0001–0.006) NA

ZINB Null 0.56 (0.45–0.68) 0.8 (0.2–1.5)
Best 0.0002 (−0.0001–0.0001) 0.7 (0.3–1.0)

NA = parameter not applicable.

simplex less than 6% of the deviance was explained, while 16–28%
was explained in the case of O. bennigseni.

The zero-inflation probability (�) in the data significantly varied
with the distributional assumption and covariates included in each
model (Tables 1–3). The 95% CI showed differences in estimates of
� among various models of M. ochroptera within ZIP (Table 1) and
ZINB distributions (Table 2). Zero inflation was significantly lower
in the best ZIP model compared with the null model (Table 1). Simi-
larly, the zero-inflation probability of was significantly reduced (by
54.8%) in the best ZINB model compared with the null model. Most
of the single- and two-variable models of M. ochroptera abundance
had significantly higher zero-inflation probability (� > 0.60) com-
pared to the full ZINB model (� < 0.54). In the Diaecoderus dataset,
zero-inflation probability dropped from 0.42 in the null ZIP model
to 0.34 in the best ZIP model. In the ZINB model, the reduction

was even more dramatic (Table 3). Similar trends were observed
in the H. cubana, G. simplex and O. bennigseni datasets, where the
null model had significantly higher zero-inflation probability than
the best model. In all cases, the zero probability dropped from over
0.45 in the ZIP models to less than 0.10 in the ZINB models with the
same covariates (Table 3).

The dispersion parameter (k) of the NBD varied with the count
distribution used and covariate in the model (Tables 1–3). The 95%
CI showed that k values were significantly larger in the standard
NBD models than in the ZINB models (Table 2). Confidence intervals
of k were narrower in the best model compared with the null model
of all the datasets (Tables 2 and 3).

The regression parameters of TPL and their 95% CI significantly
changed with the manner in which variances and means were cal-
culated (Table 4). For example, ˛ values estimated using s2 and m

Table 4
Effect of model selection (covariate structure) on Taylor’s power law parameters of counts of Mesoplatys ochroptera, Diaecoderus sp., Heteropsylla cubana, Gonocephalum simplex
and Ootheca bennigseni.

Species Model ˛ (95% CI) ˇ (95% CI) R2

M. ochroptera Best 0.53 (0.48–0.58) 1.46 (1.39–1.54) 0.950
Date + site + treatment 0.59 (0.54–0.64) 1.49 (1.42–1.57) 0.961
Year + date + site 0.70 (0.61–0.79) 1.43 (1.31–1.55) 0.949
Date + site 0.76 (0.66–0.86) 1.48 (1.35–1.62) 0.955
Year + site + treatment 0.84 (0.72–0.95) 1.54 (1.32–1.76) 0.922
Year + date + treatment 0.85 (0.76–0.94) 1.52 (1.39–1.66) 0.944
Year + date 0.99 (0.82–1.17) 1.43 (1.22–1.64) 0.957

Diaecoderus sp. Best 0.40 (0.33–0.46) 1.29 (1.12–1.46) 0.904
Treatment 0.43 (0.36–0.49) 1.29 (1.16–1.62) 0.942

H. cubana Best (all covariates) 0.75 (0.59–0.92) 1.75 (1.57–1.93) 0.892
Date 1.15 (0.01–2.28) 1.55 (0.34–2.76) 0.760
Provenance 0.01 (−0.98–0.96) 2.73 (1.73–2.74) 0.881

G. simplex Best 0.36 (0.26–0.46) 1.49 (1.34–1.64) 0.909
Month, treatment 0.40 (0.29–0.51) 1.52 (1.35–1.69) 0.927
Site, treatment 0.42 (0.28–0.57) 1.54 (1.34–1.75) 0.902

O. bennigseni Best 0.25 (0.15–0.35) 1.18 (1.01–1.34) 0.943
Farm 0.25 (0.15–0.35) 1.18 (1.01–1.34) 0.943
Treatment 0.40 (0.27–0.52) 1.39 (1.09–1.69) 0.894
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calculated according to the best M. ochroptera abundance model
were significantly smaller than those based on year and date of
sampling (Table 4). Although not significantly different, ˛ values
based on the best model were generally small than those based on

single-variable models of the other insects (Table 4). Although the
point estimates of the slope (ˇ) did not vary much, their 95% CI were
narrower when means and variances were calculated according to
the best model than single variable models (Table 4).

Fig. 2. Plots of the observed occupancy (open circles) and occupancy predicted by the standard Poisson, ZIP, NBD, ZINB, Wilson and Room, and He and Gaston’s models against
mean densities of various insects.
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Fig. 1 shows the agreement between the observed variances and
those predicted from TPL across a range of mean densities on a log-
arithmic scale. The predicted variances were consistently smaller
than the observed across the range of densities. In all cases, regres-
sion of the observed variance against the predicted resulted in a line
with a slope (ˇ) close to 1 indicating that TPL predicted the vari-
ance consistently across all mean densities. However, the 95% CI of
˛ (0.21–0.30 for M. ochroptera, 0.23–0.62 for H. cubana, 0.11–0.29
for G. simplex, 0.15–0.30 for Diaecodersus sp., and 0.04–0.24 for O.
bennigseni) were significantly greater than 0 indicating bias in the
prediction of the variance by TPL.

3.2. Relative performance of occupancy–abundance models

The occupancy predicted by all models closely agreed with the
observed occupancy at low densities, while the agreement gener-
ally decreased as density increased (Fig. 2). The agreement was also
poorer in species whose mean densities varied widely such as M.
ochroptera and H. cubana compared with those that had narrower
density ranges (Fig. 2). Comparisons of the various models with
respect to model fit and likelihood are presented in Table 5. The
intercepts of the regression of observed vs predicted occupancy did
not significantly differ from zero (i.e. 95% CI included zero), indi-
cating lack of bias in most models of M. ochroptera (Table 5). The
only exception was Wilson and Rooms’ model that was significantly
biased in predicting occupancy. The regression slopes were signifi-
cantly smaller than unity indicating overestimation of M. ochroptera
occupancy by the Poisson, Wilson and Room’s, He and Gaston’s and
the NBD occupancy–abundance models. On other hand, the slope
of the ZIP model was significantly greater than unity (ˇ > 1.0) indi-
cating significant underestimation of the predicted occupancy of M.
ochroptera relative to the observed (Table 5). The Poisson and Wil-

son and Room’s models overestimated occupancy, and provided the
worst predictions for all datasets (Fig. 2; Table 5).

According to the R2 and PRESS, ZINB was the first ranked
occupancy–abundance model of M. ochroptera and Diaecoderus sp.,
where as He and Gaston’s model was the first ranked for H. cubana
and G. simplex. However, among the candidate models examined,
these best-fitting models were not overwhelmingly supported by
the data. For example, given the M. ochroptera data, the model
ranked first had only 51% (AICw = 0.511) chance of being the best
among the set of candidate models. Similarly, for Diaecoderus sp.,
H. cubana and G. simplex, the model ranked first had 32, 66 and 55%
chance of being the best, respectively. For O. bennigseni and G. sim-
plex where � ≈ 0 (Table 3) the Poisson model was as good as the ZIP
model (Fig. 2, Table 5). The first, second and third ranked models
had only 29, 25 and 22% chance of being the best of O. bennigseni
occupancy–abundance models (Table 5).

4. Discussion

The percentage of zero counts ranged from 45 to 80% in the
datasets analysed. This is typical of many ecological counts (Martin
et al., 2005; Sileshi, 2006, 2008; Warton, 2005). In addition,
spatially and temporally correlated data are often collected in long-
term ecological studies such as those of M. ochroptera. In such
studies, observations have some type of clustering, with obser-
vations within clusters tending to be correlated. Such data often
tend to show clumping at zero (Hall, 2000; Tooze et al., 2002).
As illustrated here (Tables 1–3) and elsewhere (Gray, 2005; Hall,
2000; Sileshi, 2008) the excess zeros can be accommodated by
zero-inflated models and covariates. Using the modelling frame-
work proposed here, one can also explain the source of zeros. For
example, the dramatic reduction in the � values from the ZIP to

Table 5
Comparison of occupancy–abundance models of Mesoplatys ochroptera, Diaecoderus sp., Heteropsylla cubana, Gonocephalum simplex and Ootheca bennigseni using regression
slopes, coefficient of determination (R2), predicted residual sum of squares (PRESS) and Akaike weights (AICw).

Species Model Intercepta Slopea R2 PRESS AICw

M. ochroptera Wilson and Room −0.09 (−0.15, −0.03) 0.72 (0.64, 0.80) 0.773 1.36 0.000
Poisson −0.01 (−0.06, 0.04) 0.67 (0.60, 0.74) 0.806 1.16 0.012
ZIP −0.01 (−0.06, 0.04) 1.32 (1.19, 1.45) 0.806 1.16 0.017
NBD −0.01 (−0.05, 0.03) 0.70 (0.63, 0.77) 0.812 1.13 0.050
He and Gaston −0.03 (−0.07, 0. 01) 0.80 (0.73, 0.87) 0.818 1.09 0.410
ZINB −0.01 (−0.05, 0.03) 1.06 (0.96, 1.16) 0.826 1.02 0.511

Diecoderus sp. Wilson and Room −0.05 (−0.20, 0.10) 0.70 (0.53, 0.87) 0.733 0.26 0.002
Poisson 0.02 (−0.09, 0.13) 0.70 (0.56, 0.84) 0.795 0.20 0.067
ZIP 0.02 (−0.09, 0.13) 1.06 (0.84, 1.28) 0.795 0.20 0.067
He and Gaston 0.01 (−0.09, 0.11) 0.78 (0.63, 0.93) 0.816 0.18 0.268
NBD −0.01 (−0.12, 0.10) 0.87 (0.71, 1.03) 0.816 0.18 0.274
ZINB −0.02 (−0.13, 0.09) 0.94 (0.76, 1.12) 0.818 0.18 0.321

H. cubana Wilson and Room −0.26 (−0.78, 0.26) 0.82 (0.29, 1.35) 0.164 2.01 0.001
Poisson −0.26 (−0.70, 0.18) 0.84 (0.38, 1.30) 0.213 1.75 0.006
ZIP −0.27 (−0.71, 0.17) 1.52 (0.68, 2.36) 0.213 1.75 0.006
NBD −0.26 (−0.65, 0.13) 0.85 (0.44, 1.26) 0.263 1.59 0.027
ZINB −0.26 (−0.64, 0.12) 0.86 (0.45, 1.27) 0.273 1.56 0.302
He and Gaston −0.17 (−0.43, 0.09) 0.86 (0.55, 1.17) 0.388 1.25 0.659

G. simplex ZIP 0.08 (0.04, 0.12) 1.24 (0.99, 1.49) 0.712 0.31 0.044
Poisson 0.09 (0.05, 0.13) 0.62 (0.50, 0.74) 0.713 0.31 0.044
Wilson and Room −0.02 (−0.08, 0.04) 0.64 (0.52, 0.76) 0.735 0.29 0.060
ZINB 0.08 (0.04, 0.12) 0.72 (0.58, 0.86) 0.726 0.28 0.126
NBD 0.07 (0.03, 0.11) 0.76 (0.62, 0.90) 0.725 0.28 0.177
He and Gaston 0.03 (−0.02, 0.08) 0.77 (0.60, 0.88) 0.746 0.26 0.550

O. bennigseni Wilson and Room −0.11 (−0.23, 0.01) 0.88 (0.73, 1.03) 0.909 0.17 0.000
ZINB −0.03 (−0.11, 0.05) 1.26 (1.11, 1.41) 0.954 0.08 0.101
NBD −0.02 (−0.09, 0.05) 1.03 (0.92, 1.14) 0.958 0.08 0.130
He and Gaston −0.02 (−0.09, 0.05) 0.94 (0.84, 1.04) 0.961 0.07 0.221
Poisson −0.01 (−0.08, 0.06) 0.89 (0.80, 0.98) 0.962 0.07 0.254
ZIP −0.01 (0.08, 0.06) 0.89 (0.80, 0.98) 0.962 0.06 0.293

Figures in bold face indicate the best model for each species.
a Figures in parentheses are the lower and upper 95% confidence limits of the intercepts and slopes.
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ZINB (with the same covariates) in the case of H. cubana, Diae-
coderus sp. and G. simplex clearly indicates that most of the zeros
were due to contagion that could not be accounted for by the ZIP
models. Similarly, the significant reduction in � values in the best
ZINB model compared to the null ZINB model in all datasets indi-
cates that some zeros are related to environmental correlates of
abundance. This indicates that the parameters (e.g. �, k) used in
occupancy–abundance models can be significantly influenced by
the distributional assumption and environmental correlates used
in the modelling.

The analysis has also demonstrated that only a small portion
of the variation in these parameters has been explained by the
covariates used even in the best model selected by AIC. This high-
lights the need for considering more complex cases of hierarchical
designs and additional explanatory variables to improve accuracy
of abundance parameters. For example, in Zambia (Sileshi et al.,
2002), stratification of trees into canopies explained 6.5% of the
deviances in M. ochroptera abundance. In most datasets, the first
ranked occupancy–abundance model was also not very different
from the second or third-ranked model in its likelihood of being
the best. This indicates the relatively high amount of uncertainty
regarding the best model. When no single model is clearly the
best, we cannot base predictions on the model ranked in first place.
Another subset of predictors could perform as well as the one cho-
sen, or if certain parameters are included the rank of the selected
model may change.

Except for O. bennigseni, the occupancy predicted by the
standard Poisson showed poorer fit to the observed occupancy com-
pared with those from the ZIP, NBD and ZINB models. This may be
due to temporal and spatial variations inducing heterogeneity that
could not be adequately accounted by the Poisson models. The fun-
damental problem is that a Poisson density predicts the probability
of zeros to be considerably less than is actually observed in a sample.
Predictions of occupancy from the NBD also showed poorer fit to the
observed. Just like the Poisson, the standard NBD does not allow for
additional zeros than predicted by the NBD. Another problem with
the NBD has been the variability in k and its doubtful relationship
with contagion (Taylor et al., 1979). Besides varying with environ-
mental correlates of abundance and zero-inflation (Tables 2 and 3),
k also depends on sample size (Lloyd-Smith, 2007). Small sample
sizes from the NBD may lead to systematic underestimation of the
mean and variance and overestimation of k. This is because small
samples are less likely to include values from the right-hand tail
of the NBD, without which datasets appears more homogeneous
(Lloyd-Smith, 2007). If these issues are not considered carefully
when estimating k, the NBD occupancy–abundance relationship
may be distorted.

Wilson and Room’s model was generally the poorest predic-
tor of occupancy relative to the observed. The poor performance
of this model (and He and Gaston’s model to some extent) may
be attributed partly to the drawbacks of TPL. From Fig. 1 it can
be seen that TPL systematically underestimates the variance at all
mean densities. It has also been repeatedly pointed out that TPL
has the unrealistic characteristic of predicting s2 < m when it is
extrapolated to low densities (Lepš, 1993; Routledge and Swartz,
1991; Yamamura, 2000). With a decrease in m (particularly when
m < 1), the predicted s2 becomes lower than the theoretical mini-
mum (Lepš, 1993). This is especially common where each sampling
unit either contains singletons or is empty. Thus TPL is bound to
give a bad relative approximation of �2 for small � unless ˇ = 1, or
ˇ < 1 and �2/� is exceedingly large. Furthermore, if for small �, the
sporadically occurring individuals are likely to show up as single-
tons, then �2/� → 1 as � → 0. In this instance, TPL can accurately
predict the variance for small � only if it predicts a Poisson rela-
tionship with �2 = � (Routledge and Swartz, 1991). TPL would not be
expected to hold at densities below � = ˛(1/(1/1−ˇ)), since whatever

are the behavioural and demographic processes which underpin Eq.
(3) will no longer be operating in the same way at densities below
that for which the population is distributed randomly (Perry and
Woiwod, 1992; Yamamura, 2000).

Other statistical problems in fitting TPL include random vari-
ation in m, which may cause serious bias in ˛ and ˇ estimates.
This is not easily solved, because it is worse for small densities,
when �2 = � (Perry and Woiwod, 1992). In small sample estima-
tion of TPL parameters there are also other problems (Clark and
Perry, 1994) including (1) exclusion of samples for which m = s2 = 0;
(2) exclusion of samples for which s2 = 0, but m > 0; (3) restrictions
on the maximum and minimum variance expressible in a sample;
(4) underestimation of log(s2) for skew distributions; and (5) the
limited set of possible values of m and s2. In the present analysis,
the major problem was exclusion of samples for which m = s2 = 0
and s2 = 0 but m > 0. For example, in the case of M. ochroptera 59
mean and variance pairs (41% of the points) were removed. Simi-
larly, 42.9% and 30.0% of the mean and variance pairs were removed
from the O. bennigseni and G. simplex datasets. For the same reason,
Taylor and Woiwod (1982) omitted over 60% of the 1080 species
available for analysis. Taylor and Woiwod (1982) warned that this
problem introduces artefacts which diminish the primary regres-
sion coefficient (ˇ) and raise the intercept (log ˛). As can be seen
in Fig. 2, if there are many zeroes in the data, the calculated vari-
ance will be an underestimate of the true value, sometimes a bad
one. This makes Wilson and Room’s and He and Gaston’s models
inadequate for rare species and zero-inflated counts.

The ZINB allowed for more zeros, and hence the occupancy it
predicted agreed with the observed more closely than the stan-
dard Poisson, ZIP and NBD. However, the occupancy predicted by
all models appears to increase faster than the observed as density
increased. This is probably because the rate of increase in popu-
lation size may be different from occupancy rates. This may also
be due to the fact that the behavioural and demographic processes
which underpin occupancy rates at the lower density ranges are
different from those at higher densities. Therefore, further studies
and modelling efforts are needed to unravel the underlying cause
of mismatch between the model predictions and reality at high
densities.

The general conclusion from this analysis is that standard
count models such as Poisson and NBD fail to account for zero-
inflation and hence their respective occupancy–abundance models
are inadequate for ecological count datasets with many zeros.
Abundance–variance–occupancy models may also be inadequate
for such datasets as TPL parameters may be seriously biased in the
presence of zero-inflation. We have demonstrated that parameters
used in occupancy–abundance models depend on the distributional
assumption and predictors of abundance. Appropriate stratification
of the habitat and use of site-specific or time-specific covariates that
adequately captures information on the heterogeneity in counts
and zero-inflation can improve parameter estimates. We recom-
mend the use of hierarchical designs for sampling rare species and
analytical tools such as the one proposed here for parameter estima-
tion. The methods we propose have not been tested on count data
that are not zero-inflated. Therefore, conclusions cannot be made
about their general applicability to all species. Further studies are
needed to test their performance over a range of species.
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Appendix A.

Table A.1.

Table A.1
Candidate models of M. ochroptera abundance assuming standard and zero-inflated Poisson and negative binomial distributions.

Distribution Candidate model Model structure

Standard 1. Null ˛0 + u
Poisson or 2. Year (Y) ˛0 + ˛1(Y) + u
NBD 3. Date (D) ˛0 + ˛2(D) + u

4. Site (S) ˛0 + ˛3(S) + u
5. Treatment (T) ˛0 + ˛4(T) + u
6. Year + date ˛0 + ˛1(Y) + ˛2(D) + u
7. Year + site ˛0 + ˛1(Y) + ˛3(S) + u
8. Year + treatment ˛0 + ˛1(Y) + ˛4(T) + u
9. Date + site ˛0 + ˛2(D) + ˛3(S) + u
10. Date + treatment ˛0 + ˛2(D) + ˛4(T) + u
11. Site + treatment ˛0 + ˛3(S) + ˛4(T) + u
12. Year + date + site ˛0 + ˛1(Y) + ˛2(D) + ˛3(S) + u
13. Year + date + treatment ˛0 + ˛1(Y) + ˛2(D) + ˛4(T) + u
14. Year + site + treatment ˛0 + ˛1(Y) + ˛3(S) + ˛4(T) + u
15. Date + site + treatment ˛0 + ˛2(D) + ˛3(S) + ˛4(T) + u
16. Year + date + site + treatment ˛0 + ˛1(Y) + ˛2(D) + ˛3(S) + ˛4(T) + u

Zero-inflated 1. Null ˛0 + u; ˇ0

Poisson or 2. Year ˛0 + ˛1(Y) + u; ˇ0 + ˇ1(Y)
NBD 3. Date ˛0 + ˛2(D) + u; ˇ0 + ˇ2(D)

4. Site ˛0 + ˛3(S) + u; ˇ0 + ˇ3(S)
5. Treatment ˛0 + ˛4(T) + u; ˇ0 + ˇ4(T)
6. Year + date ˛0 + ˛1(Y) + ˛2(D) + u; ˇ0 + ˇ1(Y) + ˇ2(D)
7. Year + site ˛0 + ˛1(Y) + ˛3(S) + u; ˇ0 + ˇ1(Y) + ˇ3(S)
8. Year + treatment ˛0 + ˛1(Y) + ˛4(T) + u; ˇ0 + ˇ1(Y) + ˇ4(T)
9. Date + site ˛0 + ˛2(D) + ˛3(S) + u; ˇ0 + ˇ2(D) + ˇ3(S)
10. Date + treatment ˛0 + ˛2(D) + ˛4(T) + u; ˇ0 + ˇ2(D) + ˇ4(T)
11. Site + treatment ˛0 + ˛3(S) + ˛4(T) + u; ˇ0 + ˇ3(S) + ˇ4(T)
12. Year + date + site ˛0 + ˛1(Y) + ˛2(D) + ˛3(S) + u; ˇ0 + ˇ1(Y) + ˇ2(D) + ˇ3(S)
13. Year + date + treatment ˛0 + ˛1(Y) + ˛2(D) + ˛4(T) + u; ˇ0 + ˇ1(Y) + ˇ2(D) + ˇ4(T)
14. Year + site + treatment ˛0 + ˛1(Y) + ˛3(S) + ˛4(T) + u; ˇ0 + ˇ1(Y) + ˇ3(S) + ˇ4(T)
15. Date + site + treatment ˛0 + ˛2(D) + ˛3(S) + ˛4(T) + u; ˇ0 + ˇ2(D) + ˇ3(S) + ˇ4(T)
16. Year + date + site + treatment ˛0 + ˛1(Y) + ˛2(D) + ˛3(S) + ˛4(T) + u; ˇ0 + ˇ1(Y) + ˇ2(D) + ˇ3(S) + ˇ4(T)

In the model structure, ˛0 is the intercept; ˛1, ˛2, ˛3, an ˛4 are the coefficients in the linear predictors of the Poisson or NBD mean. The u is the random effect (tree in the
case of M. ochroptera). For the zero-inflated models, the terms after the semicolon (;) represent the zero part of the model, with ˇ0, ˇ1, ˇ2, ˇ3, and ˇ4 being the coefficients
of the Poisson or NBD mean.
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Lepš, J., 1993. Taylor’s power law and the measurement of variation in the size of
populations in space and time. Oikos 68, 349–356.

Lloyd-Smith, J.O., 2007. Maximum likelihood estimation of the negative binomial
dispersion parameter for highly overdispersed data, with applications to infec-
tious diseases. PloS ONE 2, E180.

MacKenzie, D.T., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A., Langtimm, C.A.,
2002. Estimating site occupancy rates when detection probabilities are less than
one. Ecology 83, 2248–2255.

Martin, T.G., Wintel, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-Choy, S.J.,
Tyre, A., Possingham, H.P., 2005. Zero tolerance ecology: improving ecologi-
cal inference by modelling the source of zero observations. Ecol. Lett. 8, 1235–
1246.

Mwalili, S.M., Lesaffre, E., Declerck, D., 2008. The zero-inflated negative binomial
regression model with correction for misclassification: an example in caries
research. Stat. Method. Med. Res. 17, 123–139.

Perry, J.N., Woiwod, I.P., 1992. Fitting Taylor’s power law. Oikos 65, 538–542.
Piñeiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M., 2008. How to evaluate mod-

els: observed vs predicted or predicted vs observed. Ecol. Model. 216, 316–322.
Pinheiro, J.C., Bates, D.M., 1995. Approximations to the log-likelihood function in the

nonlinear mixed-effects model. J. Comp. Graph. Stat. 4, 12–35.
Routledge, R.D., Swartz, T.B., 1991. Taylor’s power law re-examined. Oikos 60,

107–112.
Saha, K., Paul, S., 2005. Bias-corrected maximum likelihood estimator of the negative

binomial dispersion parameter. Biometrics 61, 179–185.
Sileshi, G., 2006. Selecting the right statistical model for analysis of insect count

data by using information theoretic measures. Bull. Entomol. Res. 96, 479–
488.

Sileshi, G., 2008. The excess-zero problem in soil animal count data and choice of
models for statistical inference. Pedobiologia 52, 1–17.

Sileshi, G., Mafongoya, P.L., 2007. Quantity and quality of organic inputs from cop-
picing leguminous trees influence abundance of soil macrofauna in maize crops
in eastern Zambia. Biol. Fertil. Soils 43, 333–340.

Sileshi, G., Baumgaertner, J., Sithanantham, S., Ogol, C.K.P.O., 2002. Spatial dis-
tribution and sampling plans for Mesoplatys ochroptera Stål (Coleoptera:
Chrysomelidae) on sesbania. J. Econ. Entomol. 95, 499–506.

Sileshi, G., Girma, H., Mafongoya, P.L., 2006. Occupancy–abundance models for pre-
dicting densities of three leaf beetles damaging the multipurpose tree Sesbania
sesban in eastern and southern Africa. Bull. Entomol. Res. 96, 61–69.

Taylor, L.R., 1961. Aggregation, variance and the mean. Nature 189, 732–735.



Author's personal copy

G. Sileshi et al. / Ecological Modelling 220 (2009) 1764–1775 1775

Taylor, L.R., Woiwod, I.P., 1982. Comparative synoptic dynamics. I. Relationship
between inter- and intra-specific spatial and temporal variance/mean popula-
tion parameters. J. Anim. Ecol. 51, 879–906.

Taylor, L.R., Woiwod, I.P., Perry, J.N., 1979. The negative binomial as a dynamic eco-
logical model and the density-dependence of k. J. Anim. Ecol. 48, 289–304.

Tooze, J.A., Grunwald, G.K., Jones, R.H., 2002. Analysis of repeated measures data
with clumping at zero. Stat. Methods Med. Res. 11, 341–355.

Warton, D.I., 2005. Many zeros does not mean zero inflation: comparing the
goodness-of-fit of parametric models to multivariate abundance data. Environ-
metrics 16, 275–289.

Welsh, A.H., Cunningham, R.B., Donnelly, C.F., Lindenmayer, D.B., 1996. Modelling
the abundance of rare species: statistical models for counts with extra zeros.
Ecol. Model. 88, 297–308.

Wilson, L.T., Room, P.M., 1983. Clumping patterns of fruit and arthropods in cotton,
with implications for binomial sampling. Environ. Entomol. 12, 50–54.

Wilson, P.D., 2008. The pervasive influence of sampling and methodological artefacts
on a macroecological pattern: the abundance–occupancy relationship. Global
Ecol. Biogeogr. 17, 457–464.

Yamamura, K., 2000. Colony expansion model for describing the spatial distribution
of populations. Popul. Ecol. 42, 161–169.


