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Summary
Recent studies show that soil animal count data are characterized by the presence of
excess zeros and overdispersion, which violate the assumptions of standard
statistical tests. Despite this, analyses have consisted of mainly non-parametric
tests and log-normal least square regression (i.e. ANOVA). Failure to accommodate
zero inflation in count data can result in biased estimation of ecological effects
jeopardizing the integrity of the scientific inference. The objective of this study was
to compare statistical models for the analysis of soil animal count data and suggest
appropriate methods for estimating abundance. The log-normal regression model,
linear mixed model (LMM), standard Poisson, Poisson with correction for over-
dispersion (PCO), negative binomial distribution (NBD), the zero-inflated Poisson
(ZIP) and zero-inflated negative binomial (ZINB) models were compared using 12
count data sets of earthworms, millipedes, centipedes, beetles, ants and termites
from soils under the miombo woodland and agroforestry systems in eastern Zambia.
The NBD with covariates gave a better description of the data in nine out of 12 cases
than did the standard Poisson, ZIP and ZINB. The ZIP and ZINB models with covariates
gave the best description of earthworm counts from the miombo and millipede
counts from agroforestry, respectively. In all cases, the ZIP model was better than
the standard Poisson model. The ZINB was inferior to the NBD except for earthworm
counts from the miombo and millipede counts in agroforestry. Significance tests
based on the PCO, ZIP, NBD and ZINB were more conservative than those based on
the standard Poisson model. The 95% confidence intervals computed using the PCO,
ZIP, NBD and ZINB were also wider than those computed using least squares, LMM and
assuming Poisson distribution. It is concluded that for the comparison among habitat
types, land-use categories or treatments, the NBD, ZIP and ZINB perform better than
the log-normal and Poisson models. Considering the excess-zero problem and
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significant deviation of soil animal counts from the assumptions of normality and
homoscedcity, the log-normal regression model is inappropriate. Therefore, routine
application of the log-normal regression model and non-parametric tests for analysis
of soil animal count data with many zeros should be discouraged.
& 2008 Elsevier GmbH. All rights reserved.
Introduction

Soil animals are of immediate concern in acti-
vities such as agriculture, forestry and environ-
mental monitoring. However, the complexity and
diversity of soil animals and the habitats in which
they live pose unique challenges to those seeking to
quantify the effects of land-use and management
practices on individual taxa or assemblages (Lavelle
et al., 2003; Susilo et al., 2004). The method
described by Anderson and Ingram (1993) has been
widely used for sampling soil animals. One of the
problems with data collected using this design has
been the strong spatial aggregation of soil animals
in the field (Lavelle et al., 2003; Jones et al., 2005;
Sileshi and Mafongoya, 2007). For example, due to
the patchy distribution of colonies and individuals
of termites and ants within habitats, most small- to
medium-sized soil samples will contain relatively
low number of individuals or none at all, while very
few samples may have extremely large numbers if a
nest or foraging party is encountered (Jones et al.,
2005; Kilpeläilen et al., 2005; Sileshi and Mafon-
goya, 2007). Density estimates can therefore have
high variance, making it difficult to demonstrate
statistically significant differences among sites,
land-use practices or treatments even if effects
are relatively large (Lavelle et al., 2003; Susilo
et al., 2004; Jones et al., 2005; Sileshi and
Mafongoya, 2007).

Recent studies have revealed that soil animal
counts exhibit two features: a substantial propor-
tion of the values are zero and the remainder has a
skewed distribution (Sileshi and Mafongoya, 2006a;
Sileshi and Mafongoya, 2007). When the frequency
of zeros is so large that the data do not readily fit
standard distributions, the data set is referred to as
zero inflated (Lambert, 1992; Martin et al., 2005).
Statisticians make distinctions between structural
zeros, which are inevitable, and sampling zeros,
which occur by chance. Structural zeros consist of a
large number of true zero observations caused by
the real ecological effect of interest (Martin et al.,
2005). For example, the study of rare organisms
will often lead to the collection of data with a high
frequency of zeros (Welsh et al., 1996). Sampling
zeros often referred to as false zeros (MacKenzie
et al., 2002) occur when the species under study is
present at the time of sampling, but the observer
does not detect it because of its cryptic or
secretive nature.

Zero inflation, a special case of overdispersion,
creates problems with making sound statistical
inference by violating basic assumptions implicit
in standard distributions (Martin et al., 2005;
Sileshi, 2006). If not properly modelled, overdis-
persion can lead to underestimation of the standard
errors of regression parameters, confidence inter-
vals that are too narrow, and P-values that are too
small. This can result in biased estimation of
ecological effects and jeopardize the integrity of
the scientific inferences (Lambert, 1992; Martin
et al., 2005; Sileshi, 2006). Standard statistical
texts rarely discuss this problem and it is only
recently that software for modelling count pro-
cesses that accommodate excess zeros has
emerged.

The most common analyses used for soil animals
consisted of either non-parametric tests (Swift and
Bignell, 2001; Jabin et al., 2004) or log-normal
least squares regression (e.g. ANOVA), both of
which do not deal overdispersion. The log-normal
regression is generally inappropriate for modelling
a discrete process. When testing for habitat, land-
use or treatment effects, the distributional as-
sumptions made about the response variable can
have a critical impact on the conclusions drawn.
Often data do not support only one model as clearly
best for analysis (Dayton, 2003; Johnson and Om-
land, 2004). This raises the issue of comparing
models to assess which ones are adequate for the
data and which one could be chosen as the basis for
interpretation, prediction, or other subsequent
use. Therefore, the objective of this study was to
compare statistical models for the analysis of soil
animal count data and suggest appropriate methods
for estimating abundance.
Materials and methods

Sources of data

The data used in this study were collected from
the miombo woodland and agroforestry systems in
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eastern Zambia. These were reported elsewhere
(Sileshi and Mafongoya, 2006a, b, 2007). The data
collected from the miombo were used to investi-
gate the effect of forest fire on soil animal
communities (Sileshi and Mafongoya, 2006a), while
those collected from the agroforestry systems were
used to quantify temporal variations in macrofauna
in relation to different land-use categories (Sileshi
and Mafongoya, 2006b). The data from the miombo
represent observational studies, where as those
from the agroforestry are typical of experimental
studies.

In the miombo, three sampling sites about 2 km
apart from each other were located in the Msekera
area where patches of the secondary miombo were
affected by forest fires in July–September 2003 and
2004. At each site, soil samples were collected
from forest patches that were burnt and adjacent
patches that were not affected by fire (hereafter
referred to as unburnt). This was done four times
between December 2003 and November 2004 to
coincide with contrasting periods in the climatic
cycle of the study area; (1) in December – the
beginning of the rainy season, (2) in February –

mid-rainy season, (3) in July – mid-dry season, and
(4) in November – end of the dry season. A total of
16, 26, 18 and 28 samples were collected from the
same patches in December, February, July and
November, respectively. Half of the samples were
from the burnt patches and the other half from
unburnt patches in adjacent areas (Sileshi and
Mafongoya, 2006a). The sample size was not equal
across months due to logistic constraints related to
collection and processing soil samples.

In the agroforestry practices, a total of 356 soil
samples were collected from maize grown using
leguminous agroforestry species and continuous
monoculture maize in December 2003, February
2004, July 2004 and February 2005 at Msekera and
Kalunga sites. A stratified-random sampling proce-
dure was followed when sampling the agroforestry
according to tree species, which differed in the
quality and quantity of their organic inputs (Sileshi
and Mafongoya, 2007). Five treatments were
compared in the agroforestry system: maize mono-
culture, maize grown after pure species fallows of
four legume species, namely, Gliricidia sepium,
Acacia anguistissima, Leucaena collinsi and Cal-
liandra calothyrsus (Sileshi and Mafongoya, 2006b).
The treatments were replicated three times.

In the miombo woodlands and agroforestry
systems, samples were collected using a soil
monolith (25 cm� 25 cm and 25 cm depth) placed
over a randomly selected spot (Anderson and
Ingram, 1993; Swift and Bignell, 2001), and driven
into the soil to ground level using a metallic mallet.
Three samples were taken from each treatment
replicated three times making a total of nine per
treatment. From each soil monolith, macrofauna
were hand-sorted to a family or order level and
numbers recorded.
The statistical models

The first method involved ordinary least squares
(OLS) regression (i.e. ANOVA). The probabilistic
model underlying OLS regression models assumes
that transformed data follow an approximate log-
normal (Gaussian) distribution (i.e. the model
errors are independently and identically distribu-
ted normal random variates). However, soil animal
count data often depart from this ideal situation
(Jabin et al., 2004; Sileshi and Mafongoya, 2007).
Therefore, the data were transformed as log
(count+1). These data were explicitly tested for
normality and homogeneity of variance using the
Shapiro-Wilk statistic (W) and Levene’s test, re-
spectively, before conducting analysis. The UNI-
VARIATE procedure of the SAS system (SAS, 2003)
was used to test normality, while PROC GLM was
used to test homogeneity of variance and other
analyses. The SAS codes used to generate tests of
homogeneity of variance (HOVTEST) and one- and
two-way ANOVA are presented in Appendix 1A. Log-
transformed counts of earthworms (tearthw) from
the miombo (data ¼ miombo) were used to illus-
trate the procedures.

The second method involved linear mixed mod-
elling (LMM) of the count data using the MIXED
procedure of SAS. LMMs extend the OLS regression
model by providing a more flexible specification of
the covariance matrix of the error, and allow for
both correlation and heterogeneous variances.
However, as in the OLS regression model, it is
assumed that the data are normally distributed.
The MIXED procedure fits the covariance structure
one selects for the data using the method of
restricted/residual maximum likelihood (REML) or
maximum likelihood (ML). In the present study, the
ML estimation method was used. Using the ML
estimation method, the SAS procedures presented
in Appendix 1B fit the full range of LMMs (null
model, single-variable and two-variable models)
to the log-transformed counts of earthworms
(i.e. tearthw) data set from the miombo.

The third method was based on a Poisson
generalized linear regression model (Lawless,
1987; Cameron and Trivedi, 1998). The Poisson dis-
tribution on abundance is a natural choice because
it arises under the assumption that animals are
distributed randomly in space. Poisson regression
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involves explicitly modelling the distribution of
counts assuming that the variance (s2) is propor-
tional to the mean (l), say s2 ¼ fE yð Þ ¼ fl where
f is a dispersion parameter and E(y) is the
expectation of counts (Cameron and Trivedi,
1998). The variance equals the mean when f ¼ 1,
while f41 indicates overdispersion in the Poisson
model. Parameters of the standard Poisson model
were estimated for counts of the various soil
animals using the GENMOD procedure of SAS. The
GENMOD procedure fits generalized linear models
(GLMs) using ML method. GLMs are an extension of
traditional linear models. However, they allow the
mean (l or m) of a population to depend on a linear
predictor through a nonlinear link function and
permit the response probability distribution to be
any member of the exponential family of distribu-
tions. In the GLMs used here, the animal counts (Yi)
varying over sampling units (i ¼ 1, 2,y, n) were
assumed to have a specified distribution (in this
case Poisson) whose parameters depend on a vector
of linear predictors (Xi such as treatment, time,
site) according to a log-linear function: log mi ¼
aþ b1X1 þ b2X2 þ � � � þ bnXn, where a and bi are
regression coefficients to be estimated. This can be
fitted sequentially starting from a null model (assu-
ming no covariate effect) through single-variable
models to n-variable main effects models. For exa-
mple, the GENMOD procedures in Appendix 1C fit the
full range of Poisson models to the untransformed
earthworm counts (earthwo) from the miombo.

Although Poisson regression is the recommended
approach for analyzing count data, it often does
not fit overdispersed data very well. In modelling
overdispersed count data, quasi-likelihood adjust-
ments are normally made when a reasonable lack of
fit to the standard Poisson is found (McCullagh and
Nelder, 1989). This is based on a single variance
inflation factor estimated by ML or, optionally, by
the residual deviance or Pearson’s chi-square
divided by the associated degrees of freedom
(SAS, 2003). The introduction of the variance
inflation factor, however, does not introduce a
new probability distribution. It adjusts the standard
errors and provides wider confidence intervals and
P-values larger than what is obtained under the
standard Poisson model. In the present study, this
method is termed Poisson with correction for
overdispersion (PCO). SAS implements this by
introducing an option SCALE ¼ D or SCALE ¼ P in
the model statement of the GENMOD procedure for
the Poisson. The rest of the GENMOD syntax will be
the same as in the standard Poisson example above.
For the earthworm count data used in the previous
example, the GENMOD procedure in Appendix 1D
estimated parameters of PCO models.
The PCO produces an appropriate inference only if
overdispersion is modest (Cox, 1983). For heavily
overdispersed count data, the negative binomial
distribution (NBD) is more appropriate (Lawless,
1987). The NBD is characterized by the dispersion
parameter k and the mean m, and its variance is equal
to m+km2. According to Johnson and Kotz (1969), the
NBD is a mixture of Poisson distributions such that the
expected values of the Poisson distribution vary
according to a gamma (Type III) distribution. It has
been shown that the limiting distribution of the NBD,
as the dispersion parameter (k) approaches zero, is
the Poisson. When k is an integer, the NBD becomes
the Pascal distribution, and the geometric distribu-
tion corresponds to k ¼ 1. The log series distribution
occurs when zeros are missing and as k-N. As in the
Poisson model, parameters of the NBD were esti-
mated using the GENMOD procedure. The only
difference is that, in this case DIST ¼ NB is used
instead of DIST ¼ POISSON. The rest of the GENMOD
model statement syntax will be the same. For the
earthworm count data used in the Poisson example,
the null and full NBD models may be fitted using the
SAS codes in Appendix 1E.

For modelling count data with excess zeros, zero-
inflated Poisson (ZIP) models have been proposed
(Lambert, 1992). ZIP models apply when a large
proportion of the sampling units have zero counts,
and for the remainder the Poisson parameter takes
the fixed value l (Lambert, 1992). In some cases,
the ZIP regression is often inadequate. To remedy
this, zero-inflated negative binomial (ZINB) models
have been adopted for ecological count data
(Martin et al., 2005; Warton, 2005). The basic idea
is to mix a distribution degenerate at zero with
NBD. In this study, the ZIP and ZINB models were
fitted to the various soil invertebrate data using the
nonlinear mixed effects models (NLMIXED) proce-
dure of SAS. NLMIXED belongs to a class of models
called generalized linear mixed models (GLMMs).
For distributions from the exponential family,
GLMMs extend GLMs by including random effects
in the linear predictor (McCulloch and Searle,
2001). This allows modeling the process of change
within individuals in clustered data. This procedure
also produces parameter estimates of the standard
Poisson and NBD distributions. Details of the SAS
codes used for estimating parameters of the
standard Poisson, NBD, ZIP and ZINB models are
given in Appendices 1F, 1G, 1H and 1I.
Comparing frequency distributions

The frequency distributions of the observed and
expected (assuming the Poisson and NBD) number
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of individuals were compared. ML estimates of the
dispersion parameter (k) were obtained for models
with all covariates (full model) and without
covariates (null model) using the GENMOD proce-
dure. These were used to generate the expected
frequencies under the NBD assumption. Expected
frequencies were calculated by substituting the
sample mean for m and k (with and without
covariates separately) into the probability func-
tions of the Poisson and NBD (Eqs. (4) and (18) in
Davis, 1994). Histograms were then generated for
the percentage of 0, 1,y, n soil animal counts in
the data.
Goodness of fit and criteria for
model selection

Two statistics that are helpful in assessing the
goodness of fit of a given generalized linear model
are the scaled deviance (D) and Pearson’s chi-
square statistic (SAS, 2003). Adequacy of the
Poisson and NBD regression models for the various
soil animal count data was first checked using the
ratio of the deviance to its associated degrees of
freedom (D/DF ¼ j). If the regression model is
adequate, the expected value of j will be close to
unity. Otherwise, the validity of the model could be
doubtful.

A likelihood-ratio test may be conducted to
compare the Poisson to the NBD since the Poisson
is nested within the NBD. A more appropriate
approach for comparing non-nested models is the
use of information measures such as Akaike’s
information criterion (AIC) and Bayesian informa-
tion criterion (BIC) (Johnson and Omland, 2004;
Kuha, 2004). AIC and BIC have some optimal
properties providing certain justification for choos-
ing them out of the entire range of model selection
criteria (Dayton, 2003; Johnson and Omland, 2004).
AIC and BIC apply to nested and non-nested models
alike (Golden, 2000; Dayton, 2003; Kuha, 2004;
Posada and Buckley, 2004; Sober, 2004). It must be
noted that the AIC and BIC arise from a more
general form of information criterion (IC):
IC ¼ �2ll+yc. If c ¼ 0, IC is equal to the classical
likelihood-ratio statistic. If c ¼ 1, IC is equal to the
GLIM goodness-of-fit procedure based on plotting
the deviance against degrees of freedom (Smith
and Speigelhalter, 1980). If c ¼ 2, IC is identical to
AIC, and if c ¼ logN, IC is equal to BIC (Atkinson,
1981). It is also known that AIC (c ¼ 2) is asym-
ptotically equivalent to a cross-validation criterion
(Stone, 1977).

For any specified model in this study, AIC and BIC
were computed as AIC ¼ �2ll+2y and BIC ¼ �2ll+
y(log(n)), respectively. Here ll is the log-likelihood
for the model, y is the number of independent
parameters that are estimated in fitting the model
and n is the sample size (Dayton, 2003). Since AIC
does not depend directly on sample size it lacks
certain properties of asymptotic consistency. How-
ever, in finite samples, adjusted versions of AIC
such as the second-order Akaike information
criterion (AICc) (Hurvich and Tsai, 1989) perform
much better (Johnson and Omland, 2004). Hence,
AICc may be computed as follows:

AICc ¼ �2llþ 2yþ
2yðyþ 1Þ
n� y� 1

.

Using AICc and BIC as a guide, first the Poisson,
NBD, ZIP and ZINB models were compared sepa-
rately. All soil animal data from both the miombo
and agroforestry were used for this comparison. It
must be noted that the log-likelihoods for Poisson
and NBD (estimated using the GENMOD procedure)
are not comparable with those of the ZIP and ZINB
(estimated using the NLMIXED procedure) although
the other coefficients are the same. Therefore, SAS
codes of the NLMIXED procedure were written to
obtain comparable AICc for the Poisson, NBD, ZIP
and ZINB (Appendices 1C, 1E, 1F and 1G). It must
also be noted that comparison of AICc for the LMM
and PCO with those of the other models is not
straightforward as the likelihoods estimated by the
GENMOD and MIXED procedures differ.

Comparison of subset models (nested in each
distribution model) was also made using BIC and
variants of the AIC. To demonstrate this, only
earthworm counts were used. Akaike weights
(AICw) were computed from AICc, as these have
the advantage of being easy to interpret than AICc.
The DAICc, which is a measure of each model
relative to the best model was first calculated as
DAICci ¼ AICci�AICcmin, where AICci is the AICc

value for model i, and AICcmin is the AICc value of
the ‘‘best’’ model. AICw was then calculated as
follows:

AICw ¼
exp �0:5DAICcð Þ
P

exp �0:5DAICcð Þ
.

AICw indicates the probability that the model is
the best among the whole set of candidate models.
Therefore, it provides a measure of the strength of
evidence for each model. To demonstrate the
application of AIC and BIC for nested model
selection, only the earthworm data is presented
here. To demonstrate the impact of model choice
on statistical significance of covariates and para-
meter estimates, soil animal data from the miombo
were used.
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Results

Frequency of zeros

Figures 1 and 2 present the frequency distribu-
tion of animals in soils under the miombo woodland
and agroforestry systems, respectively. Zeros con-
stituted 71% and 74% of the total earthworm counts
in the data from the miombo and agroforestry,
respectively. The respective figures for the milli-
pede data from the miombo and agroforestry were
43% and 74%, while those for centipedes were 61%
and 91%. The observed frequency of zeros in
earthworm, millipede and centipede counts was
closest to that expected under the NBD than the
Poisson (Figure 1). Zeroes also constituted 17% and
41% of beetle counts in soils under the miombo and
agroforestry, respectively. The observed frequency
of zeros in beetle counts was larger than what is
expected under Poisson distribution assumption.
However, it was smaller than what is expected
assuming NBD especially with covariate effects
(Figure 2). Zeros represented 36% and 65% of the
total ant counts in the miombo and agroforestry,
while those for termites were 32% and 54%,
respectively. Ant and termite counts had more
frequency of zeros than that expected assuming
either NBD or Poisson distributions (Figures 1 and
2). It must be noted that some artifacts may occur
in the termite and ant count data as a result of
clustering of bins at highest densities. The ex-
pected frequency of zeros in all soil animal count
data sets was higher under the NBD with all
covariates than the same model without covariate
structure (Figures 1 and 2).
Model fit and adequacy

Shapiro-Wilks and Levene’s tests indicated sig-
nificant departure from normality and homogeneity
of variance in most data sets (Table 1). The j
values for the Poisson model were larger than unity
(data not shown) indicating overdispersion relative
to the Poisson assumption. However, j values were
closer to unity under the NBD indicating a better fit
for most soil animals. According to the AIC (Table 2)
and BIC (data not shown), the NBD with covariates
provided a better description of the data in 10 out
of the 12 cases than did the standard Poisson, ZIP
and ZINB. The full NBD model was best in describing
earthworm and termite counts from agroforestry,
centipede, beetle and ant counts from both
miombo and agroforestry. The ZIP and ZINB models
with covariates gave the best description of earth-
worm counts from the miombo and millipede
counts from agroforestry, respectively. In all cases,
the ZIP model was better than the standard Poisson
model. The ZINB was inferior to the NBD in most
cases except for earthworm counts from the
miombo and millipede counts in agroforestry. None
of the data sets were adequately described by the
standard Poisson model. In all cases, the full models
(with all covariates) performed better than the null
models for all soil animal count data sets except for
termites in the miombo (Table 2). Since the AICc for
the LMM and PCO are not comparable with those of
the other models, they are not presented here. The
BIC selected the same model as the AIC. Therefore,
comparisons using BIC are not presented here.
Statistical significance of covariates

Table 3 shows the difference among distribution
models in the statistical significance (P-values) of
treatment and time (month) effects. In this table
nested models, i.e. (1) models with the intercept
and main effect of treatment alone, (2) models
with the intercept and main effect of time and (3)
models with the intercept and the main effects of
both treatment and time are also compared.
Examination of the P-values suggests that our
conclusions about the effect of treatments and
time on animal counts are greatly affected by the
choice of the model. For example, the Poisson
model indicated highly significant (Po0.0001)
treatment and time effects on all animals except
centipedes even where the log-normal regression,
LMM and NBD showed slight or no effects (Table 3).
Significance tests based on the PCO and NBD were
more conservative than those based on the stan-
dard Poisson model. Under each distribution model,
the P-values for the main effects of treatment and
time differed depending on whether they were
analyzed separately or together (Table 3).

Using BIC and AIC, Table 4 compares the whole
range of nested models (the null model, single-
variable models, two-variable main effects models)
for the earthworm count data sets. The ZIP model
was the best for the data from the miombo, while
the NBD was the best for the counts from
agroforestry. For the earthworm count data from
the miombo, the model with both main effects
(treatment and time) was the best (AICw ¼ 1.0).
The null model and single-variable models had less
than 1% likelihood. For the data from agroforestry
systems, the best model which consisted of site had
38% likelihood, while models where site and month
or site and treatment each had 24% likelihood. The
full model has only 14% likelihood of being the
correct model.
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Figure 1. Frequency distribution of observed and expected counts of earthworms, millipedes and centipedes in soil
monoliths taken from the miombo woodland and agroforestry plots in eastern Zambia. Histograms represent the
percentage of 0, 1,y, n soil animal counts in the data. NBDcov represents the negative binomial distribution model
with all covariates while NBD represents the negative binomial distribution without covariates.
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The most striking effect of model choices was
on the standard errors of parameter estimates
and the 95% confidence intervals (Table 5). The
95% confidence intervals computed using the PCO,
ZIP, NBD and ZINB were also wider than those
obtained using the OLS, LMM and standard Poisson.
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Figure 2. Frequency distribution of observed and expected counts of beetles, ants and termites in soil monoliths taken
from the miombo woodland and agroforestry plots in eastern Zambia. Histograms represent the percentage of
0, 1,y, n soil animal counts in the data. NBDcov represents the negative binomial distribution model with all
covariates while NBD represents the negative binomial distribution without covariates.
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Table 1. Shapiro-Wilk test of normality and Levene’s test of homogeneity of variance of log-transformed soil
invertebrate count data under the miombo woodland and agroforestry species

Invertebrate groups Test of normality (Shapiro-Wilk)a Levene’s test of homogeneity of variance

Miombo Agroforestry Sources Miombo Agroforestry

Earthworms 0.62*** 0.60*** Treatment 15.3*** 0.9ns
Month 15.8*** 17.2***
Site NA 35.5***

Beetles 0.95*** 0.86**** Treatment 0.3ns 2.2*
Month 1.9ns 2.6*
Site NA 15.5***

Ants 0.85*** 0.62*** Treatment 4.0* 0.7ns
Month 1.3ns 0.7ns
Site NA 0.04ns

Termites 0.90*** 0.76*** Treatment 0.02ns 1.2ns
Month 2.8* 7.4***
Site NA 9.5***

Centipedes 0.72*** 0.32*** Treatment 0.3ns 0.9ns
Month 7.9*** 3.9**
Site NA 4.8*

Millipedes 0.84*** 0.60*** Treatment 0.9ns 2.3*
Month 2.4ns 4.1**
Site NA 2.9ns

NA ¼ not applicable.*, ** and *** indicate significance at the 5%, 1% and 0.1% levels, respectively.
aShapiro-Wilk W statistic and its significance.

Table 2. Comparison of the linear mixed-model (LMM), standard Poisson, Poisson corrected for overdispersion (PCO),
the negative binomial distribution (NBD), zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) null
models (without covariate structure) and full models (with all covariates) for different soil invertebrate groups using
Akaike information criteria (AICc)

Land-use Animal group Null model Full models

Poisson ZIP ZINB NBD Poisson ZIP ZINB NBD

Miombo Earthworms 291 216 209 207 197 172 174 176
Millipedes 475 405 622 324 420 382 321 317
Centipedes 312 256 438 241 282 241 228 227
Beetles 509 484 416 414 429 427 396 390
Ants 1658 1564 463 460 1419 1142 460 453
Termites 2068 1943 529 527 3869 3263 560 553

Agroforestry Earthworms 898 719 705 706 819 688 683 682
Millipedes 716 681 649 647 723 652 615 630
Centipedes 288 272 265 263 262 255 250 249
Beetles 1403 1303 1184 1182 1260 1207 1132 1123
Ants 3455 2495 1031 1030 3388 2413 1036 1031
Termites 10853 6486 1706 1704 10061 6345 1698 1698

For each soil invertebrate group (within a row), the best model is indicated by bold AICc scores. Models within a column should not be
compared.

Excess zeros problem in soil animal counts 9
Since this pattern was consistently observed in the
data sets from both the miombo and agroforestry,
for brevity only the miombo data set was pre-
sented here.
Discussion

For most of the taxa studied, the data sets
significantly deviated from the assumptions of the
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Table 3. Impact of choice of non-nested and nested model choice on statistical significance (P-value) of treatment
and time (month) effects on abundance of soil invertebrate groups in the miombo woodland

Invertebrate
groups

Nested
model

Variables in
model

OLS LMM Poisson PCO ZIPa NBD ZINBa

Earthworms 1 Treatment 0.0004 0.0008 o0.0001 o0.0001 0.0434 0.0005 0.3902
2 Month 0.0002 0.0002 o0.0001 o0.0001 0.0009 o0.0001 0.4128
3 Treatment o0.0001 o0.0001 o0.0001 o0.0001 o0.0001 o0.0001 o0.0001
3 Month o0.0001 o0.0001 o0.0001 o0.0001 0.0029 o0.0001 o0.0001

Millipedes 1 Treatment 0.0550 0.1024 o0.0001 0.0381 0.0720 0.0574 0.2023
2 Month 0.0665 0.0396 o0.0001 0.0051 o0.0001 0.0164 0.0019
3 Treatment 0.0447 0.0388 o0.0001 0.0234 0.3530 0.1020 0.8440
3 Month 0.0555 0.0457 o0.0001 0.0033 o0.0001 0.0252 0.0006

Centipedes 1 Treatment 0.5516 0.9980 0.9962 0.9976 0.0958 0.9980 0.2820
2 Month o0.0001 o0.0001 o0.0001 o0.0001 0.2049 o0.0001 0.8299
3 Treatment 0.3717 0.3577 0.8789 0.9000 0.0801 0.2951 0.5364
3 Month o0.0001 o0.0001 o0.0001 o0.0001 0.1346 o0.0001 0.7675

Beetles 1 Treatment o0.0001 0.0003 o0.0001 o0.0001 o0.0001 o0.0001 0.0013
2 Month 0.0053 0.0045 o0.0001 0.0011 0.0011 0.0015 0.0003
3 Treatment o0.0001 o0.0001 o0.001 o0.0001 o0.0001 o0.0001 0.0014
3 Month 0.0013 0.0009 o0.0001 0.0002 o0.0001 0.0006 0.0002

Ants 1 Treatment 0.0130 0.0192 o0.0001 0.0008 o0.0001 0.0036 0.0124
2 Month 0.0119 0.2929 o0.0001 0.0456 o0.0001 0.0685 0.0471
3 Treatment 0.0124 0.0101 o0.0001 0.0007 o0.0001 0.2153 0.0217
3 Month 0.1075 0.0921 o0.0001 0.0333 o0.0001 0.0157 0.0946

Termites 1 Treatment 0.3916 0.2698 o0.0001 0.1604 o0.0001 0.2425 0.4123
2 Month 0.0009 0.0601 o0.0001 0.0035 o0.0001 0.0169 0.0005
3 Treatment 0.6387 0.6287 o0.0001 0.1603 o0.0001 0.8343 0.0006
3 Month 0.0008 0.0005 o0.0001 0.0037 o0.0001 o0.0001 o0.0001

The non-nested models are ordinary least square (OLS) regression, linear mixed model (LMM), standard Poisson, Poisson corrected for
overdispersion (PCO) and negative binomial distribution (NBD). Under each of these are three models: (1) models with the intercept
and main effect of treatment, (2) models with the intercept and main effect of time and (3) model with the intercept and the main
effects of both treatment and time.
aZIP and ZINB models produce P of covariates for both the zero inflated and count parts. Here P values of only the count part of the
model are presented.
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log-normal regression model, and the logarithmic
transformation did not achieve the desired result
(Table 1). The effectiveness of transformations to
stabilize the variance in count data decreases with
increase in the number of zeros. Especially, the
logarithmic transformation is not applicable in such
cases (Yamamura, 1999). Researchers often trans-
form the data or use non-parametric tests to
analyze count data. However, these procedures
have their own limitations and they may have lower
power. Until recently, non-parametric tests could
be used only in one-way ANOVA. Non-parametric
methods for multi-way ANOVA have become avail-
able after Brunner and Puri’s (2001) work that laid
the theoretical foundations for analyzing data
originating in factorial designs.

Most of the data sets had more zeros than the
Poisson or NBD distribution models can accommo-
date. However, the NBD with covariate information
(e.g. treatment, time, site) provided a better
description of most soil animal counts compared
to the Poisson, ZIP or ZINB. Results of this study
agree with the growing body of literature (Welsh
et al., 1996; Martin et al., 2005; Warton, 2005;
Sileshi, 2006) demonstrating that excess zeros are
practical phenomena in count data. Zero inflation
and overdispersion may be caused by patchiness of
the environment, inherent heterogeneity of the soil
animal concerned or imperfect detection of the
animals (Martin et al., 2005; Warton, 2005; Sileshi,
2006). For example, the high frequency of zeros
(41–91% of counts) observed in animal counts
under agroforestry compared to the miombo soils
(17–71%) may be due to the patchiness of agrofor-
estry plots. Data may also be overdispersed when
experimental conditions are not perfectly under
control and thus the unknown parameters (mi) vary
not only with measured covariates (such as land use
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Table 4. The negative log-likelihoods (�2ll), the dispersion parameters (k), Byesian information criteria (BIC),
second-order Akaike information criterion (AICc) and Akaike weights (AICw) of the range of ZIP models for earthworm
counts from the miombo woodland and NBD models for earthworm counts in agroforestry (NBD)

Nested models �2ll Dispersion parameter (k) BIC AICc AICw

Miombo
Null (intercept only) 212 – 221 216 0
Treatment 196 – 214 204 0
Month 185 – 203 194 0
Month+treatment 159 – 186 172 1.0

Agroforestry
Null (intercept only) 700 3.92 712 705 0
Treatment 700 3.90 718 706 0
Month+treatment 697 3.78 721 705 0
Month 698 3.80 715 704 0
Site+month+treatment 672 2.86 702 682 0.14
Site+month 673 2.88 697 681 0.24
Site+treatment 672 2.93 697 681 0.24
Site 674 2.94 692 680 0.38

A total of 88 and 356 sampling units (n) were used for the analysis.

Table 5. The 95% confidence intervals of mean densities estimated using various distribution assumptions for counts
of soil invertebrates in the miombo woodland

Invertebrates Treatment OLS LMM Poisson PCO ZIP NBD ZINB

Earthworms Burnt 0.0–0.5 �0.3–0.7 0.1–0.4 0.1–0.6 0.1–0.4 0.1–0.5 0.1–0.6
Unburnt 0.8–2.1 0.9–1.9 1.1–1.8 1.0–2.0 0.8–2.3 0.8–2.5 0.8–2.5

Beetles Burnt 0.3–3.7 1.0–3.0 1.6–2.5 1.4–2.9 1.4–2.7 1.5–2.7 1.4–2.8
Unburnt �0.9–10.1 3.6–5.6 1.5–5.3 3.7–5.8 3.7–5.7 3.6–5.9 3.6–5.9

Centipedes Burnt 0.3–1.7 0.5–1.6 0.8–1.4 0.6–1.7 0.7–1.6 0.6–1.8 0.7–1.8
Unburnt 0.5–1.5 0.5–1.6 0.8–1.4 0.6–1.6 0.5–1.6 0.6–1.8 0.6–1.8

Millipedes Burnt 0.6–2.0 0.3–2.3 1.0–1.7 0.7–2.2 0.6–2.3 0.8–2.0 0.8–1.8
Unburnt 1.3–3.7 1.5–3.4 2.1–3.0 1.7–3.5 1.5–3.8 1.6–3.8 1.5–3.6

Ants Burnt 2.4–3.6 �1.1–7.1 2.5–3.6 1.6–5.9 2.7–5.2 1.8–5.3 1.8–5.2
Unburnt 8.7–11.1 5.9–13.9 9.0–10.9 6.9–14.3 6.5–15.5 5.9–16.6 6.0–16.0

Termites Burnt 5.6–18.3 6.5–17.5 10.9–13.1 8.0–17.8 8.9–19.8 7.0–20.3 7.3–21.0
Unburnt 2.9–12.3 2.2–13.1 6.9–8.5 4.7–12.6 4.5–12.5 4.5–12.9 4.5–12.9
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or treatment) but with latent and uncontrolled
factors. This is often the case in observational
studies such as the one conducted in the miombo
woodland.

Another factor contributing to the excess-zero
counts is the multivariate nature of the data
(Warton, 2005). Such data are multivariate in the
sense that they are separately recorded for many
taxa from the same soil monolith. Sampling of many
taxa simultaneously is not usually limited to
locations where all taxa might occur, hence multi-
variate abundance data are naturally expected to
contain more frequent zeros (Sileshi, 2006; Warton,
2005). Imperfect detection of soil animals could
also lead to excess-zero counts. For example, a
variable proportion of individuals ranging from 10%
to 100% are found during soil processing, depending
on the size, color and mobility of the animals
(Lavelle et al., 2003).

At first guess, one might suppose the distribu-
tions of soil animals to follow the Poisson assump-
tion. It is also tempting to believe that the Poisson
model is better considering the significance of
effects (Table 3). However, the f values indicated
poor fit of most data to the Poisson. This may be
due to the temporal and spatial (treatment-
specific) changes inducing heterogeneity that could
not be adequately accounted by the Poisson model
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(Sileshi and Mafongoya, 2007). The other funda-
mental problem is that the Poisson distribution
is parameterized in terms of a single scalar (l)
so that all moments of y are a function of l. In
many applications a Poisson density predicts the
probability of a zero count to be considerably
less than is actually observed in a sample (i.e.
excess-zero problem). That is why the ZIP model
was superior to the standard Poisson model. A
second and more obvious deficiency of the Poisson
is that for count data the variance usually exceeds
the mean (overdispersion), while the Poisson
implies equality of the variance and the mean
(Cameron and Trivedi, 1998). Poisson standard
errors tend to be deflated in the presence of
overdispersion and hence confidence intervals will
be narrow (Table 5). Therefore, it is important to
control overdispersion because large overdispersion
can lead to grossly inflated statistics (Table 3) and
deflated standard errors in the usual ML output
(Table 5).

The NBD, ZIP and ZINB allowed for more zero
counts and overdispersion than can be described by
the Poisson. This was particularly so when covariate
effects were included in the model (Figures 1 and
2). This agrees with Warton (2005) conclusion that
the NBD fits multivariate counts very well because
the high frequency of zeros can be well described
by the systematic component of the model.
Considering the significant deviation of the counts
from the assumptions of normality and homogene-
ity of variance, the log-normal regression model
was inappropriate. Therefore, it is concluded that
for the comparison among habitat types, land-use
categories or treatments, the NBD performs better
than the log-normal and Poisson models. Unlike the
log-normal model, the NBD does not assume
homogeneous variances but actually accommo-
dates spatial variances.
Some soil animal taxa in a community are rare,
and counts of such taxa may contain more zeros
than the Poisson and NBD models can accommo-
date. Yet such taxa will frequently be of ecological,
conservation, or management interest. Recently,
two-part conditional models have been used for
handling zero-inflated data (Cunningham and Lin-
denmayer, 2005). These models are generally
known as hurdle models. Future studies may
explore the possibility of applying such methods
for modelling count data of rare species. However,
a model which is readily fitted and simple to
interpret should be advocated.

In conclusion, routine application of non-para-
metric tests and log-normal regression models for
analysis of soil animal count data with many zeros
should be discouraged. Instead a statistical model
appropriate for the observed data should be
selected using objective criteria so that optimal
inferences can be drawn about habitat, land-use or
treatment effects. Information criteria such as AIC
and BIC allow one to compare non-nested as well as
subset models (Tables 2 and 5) by taking into
account model uncertainty. This method performs
better than the traditional null hypothesis test
(e.g. Table 3) for interpreting effects within a
specified model (Dayton, 2003).
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Appendix 1A. SAS codes used for conducting homogeneity of variance tests
and ANOVA

Proc glm data ¼ miombo;
Class sample treat Month;
Model tearthw ¼ Month/ss3;
Means Month/HOVTEST;/*HOVTES and one-way ANOVA for month*/
Run;
Proc glm data ¼ miombo;
Class sample treat Month;
Model tearthw ¼ treat/ss3;
Means treat/HOVTEST;/*HOVTEST and one-way ANOVA for treatment*/
Run;
Proc glm data ¼ miombo;
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Class sample treat Month;
Model tearthw ¼ treat Month/ss3;/*Two-way ANOVA*/
Run;

Appendix 1B. SAS codes for fitting linear mixed models

Proc mixed Method ¼ ML data ¼ miombo;
Class sample treat Month;
Model tearthw ¼ ; /*Null model with no variables*/
Random sample;
Run;
Proc mixed Method ¼ ML data ¼ miombo;
Class sample treat Month;
Model tearthw ¼ treat;/*Treatment main effect model*/
Random sample;
Run;
Proc mixed Method ¼ ML data ¼ miombo;
Class sample treat Month;
Model tearthw ¼ month;/*Month main effect model*/
Random sample;
Run;
Proc mixed Method ¼ ML data ¼ miombo;
Class sample treat Month;
Model tearthw ¼ treat Month; /*Model with both main effects*/
Random sample;
Run;

Appendix 1C. SAS codes for fitting the standard Poisson model using the
GENMOD procedure

Proc genmod data ¼ miombo; /*Null model using GENMOD*/
Class sample Month treat;
Model earthwo ¼ /dist ¼ poisson link ¼ log;
Run;
Proc genmod data ¼ miombo;
Class sample Month treat;
Model earthwo ¼ Month/dist ¼ poisson link ¼ log type3;/*Main effect of month*/
Run;
Proc genmod data ¼ miombo;
Class sample Month treat;
Model earthwo ¼ treat/dist ¼ poisson link ¼ log type3;/*Treatment main effect*/
Run;
Proc genmod data ¼ miombo; /*Full model GENMOD*/
Class sample Month treat;
Model earthwo ¼ Month treat/dist ¼ poisson link ¼ log type3;
Run;

Appendix 1D. SAS codes for fitting the PCO using the GENMOD procedure

Proc genmod data ¼ miombo;
Class sample Month treat;
Model earthwo ¼ /dist ¼ poisson link ¼ log scale ¼ D;/*Null model using GENMOD*/
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Run;
Proc genmod data ¼ miombo;
Class sample Month treat;
Model earthwo ¼ Month/dist ¼ poisson link ¼ log scale ¼ D type3;/*Month effect*/
Run;
Proc genmod data ¼ miombo;
Class sample Month treat;
Model earthwo ¼ treat/dist ¼ poisson link ¼ log scale ¼ D type3;/*Treatment effect*/
Run;
Proc genmod data ¼ miombo;
Class sample Month treat;
Model earthwo ¼ Month treat/dist ¼ poisson link ¼ log scale ¼ D type3;/*All main ef-

fects*/
Run;

Appendix 1E. SAS codes for fitting the NBD using the GENMOD procedure

Proc genmod data ¼ miombo; /*Null model using GENMOD*/
Class sample Month treat;
Model earthwo ¼ /DIST ¼ NB link ¼ log;
Run;
Proc genmod data ¼ miombo;
Class sample Month treat;
Model earthwo ¼ Month/dist ¼ NB link ¼ log type3;/*Month effect*/
Run;
Proc genmod data ¼ miombo;
Class sample Month treat;
Model earthwo ¼ treat/dist ¼ NB link ¼ log type3;/*Treatment effect*/
Run;
Proc genmod data ¼ miombo; /*Full model GENMOD*/
Class sample Month treat;
Model earthwo ¼ Month treat/dist ¼ NB link ¼ log type3;
Run;

Appendix 1F. SAS codes for fitting the standard Poisson model using the
NLMIXED procedure

Proc nlmixed data ¼ miofaun; /*Null model using NLMIXED*/
parms a0 ¼ 0;

eta ¼ a0;
lambda ¼ exp(eta);

model earthwo�poisson(lambda);
run;
proc nlmixed data ¼ miofaun; /*Full model NLMIXED*/
parms a0 ¼ 0 a1 ¼ 0 a2 ¼ 0;

eta ¼ a0+a1*Month+a2*treat;
lambda ¼ exp(eta);

model earthwo�poisson(lambda);
run;

Appendix 1G. SAS codes for fitting the NBD using the NLMIXED procedure

PROC NLMIXED DATA ¼ miofaun; /*Null model/
PARMS b0 ¼ 0;

eta ¼ b0;
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mean ¼ EXP(eta);
loglike ¼ earthwo*LOG(k*mean)-(earthwo+(1/k))*LOG(1+k*mean)+LGAMMA(earthwo+
(1/k))-LGAMMA(1/k)-LGAMMA(earthwo+1);

MODEL earthwo�general(loglike);
ESTIMATE ‘mean’ exp(b0);

run;
proc nlmixed data ¼ miofaun; /*Full model/
parameters a0 ¼ 0 a1 ¼ 0 a2 ¼ 0;

linpinfl ¼ a0+a1*Month+a2*treat;
lambda ¼ exp(linpinfl);
II ¼ lgamma(earthwo+(1/k))-lgamma(earthwo+1)-lgamma(1/k) +earthwo*log(k*lambda)-
(earthwo+(1/k))*log(1+k*lambda);

model earthwo�general(II);
run;

Appendix 1H. SAS codes for fitting the ZIP model

Proc nlmixed data ¼ miofaun; /*Null model*/
parameters a0 ¼ 0 b0 ¼ 0;

linpinfl ¼ a0;
bpart ¼ b0;
lambda ¼ exp(bpart);
infprob ¼ 1/(1+exp(linpinfl));

if earthwo ¼ 0 then ll ¼ log(infprob+(1-infprob)*exp(-lambda));
else ll ¼ log((1-infprob))+earthwo*log(lambda)-lgamma(earthwo+1)-lambda;
model earthwo�general(ll);
run;
proc nlmixed data ¼ miofaun; /*Full model*/
parameters a0 ¼ 0 a1 ¼ 0 a2 ¼ 0 b0 ¼ 0 b1 ¼ 0 b2 ¼ 0;

linpinfl ¼ a0+a1*Month+a2*treat;
bpart ¼ b0+b1*Month+b2*treat;
lambda ¼ exp(bpart);
infprob ¼ 1/(1+exp(linpinfl));

if earthwo ¼ 0 then ll ¼ log(infprob+(1-infprob)*exp(-lambda));
else ll ¼ log((1-infprob))+earthwo*log(lambda)-lgamma(earthwo+1)-lambda;
model earthwo�general(ll);
ESTIMATE ‘infprob’ 1/(1+exp(linpinfl));
run;

Appendix 1I. SAS codes for fitting the ZINB

PROC NLMIXED data ¼ miofaun; /*Null model*/
PARMS a0 ¼ 0 b0 ¼ 0;

linpinfl ¼ a0;
infprob ¼ 1/(1+exp(linpinfl));
eta_nb ¼ b0;
lambda ¼ exp(eta_nb);
p0 ¼ infprob+(1-infprob)*exp(-(earthwo+(1/k))*log(1+k*lambda));
p_else ¼ (1-infprob)*exp(lgamma(earthwo+(1/k))-lgamma(earthwo+1)-lgamma(1/
k)+earthwo*log(k*lambda)-(earthwo+(1/k))*log(1+k*lambda));

if earthwo ¼ 0 then loglike ¼ log(p0);
else loglike ¼ log(p_else);
model earthwo�general(loglike);
run;
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proc nlmixed data ¼ miofaun; /*Full model*/
parms a0 ¼ 0 a1 ¼ 0 a2 ¼ 0 b0 ¼ 0 b1 ¼ 0 b2 ¼ 0;

linpinfl ¼ a0+a1*Month+a2*treat;
infprob ¼ 1/(1+exp(linpinfl));
eta_nb ¼ b0+b1*Month+b2*treat;
lambda ¼ exp(eta_nb);
p0 ¼ infprob+(1-infprob)*exp(-(earthwo+(1/k))*log(1+k*lambda));
p_else ¼ (1-infprob)*exp(lgamma(earthwo+(1/k))-lgamma(earthwo+1)-lgamma
(1/k)+earthwo*log(k*lambda)-(earthwo+(1/k))*log(1+k*lambda));

if earthwo ¼ 0 then loglike ¼ log(p0); else loglike ¼ log(p_else);
model earthwo�general(loglike);
ESTIMATE ‘infprob’ 1/(1+exp(linpinfl));
run;
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Kilpeläilen, J., Punttila, P., Sundström, L., Niemelä, P.,
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