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Abstract

Researchers and regulatory agencies often make statistical inferences from
insect count data using modelling approaches that assume homogeneous variance.
Such models do not allow for formal appraisal of variability which in its different
forms is the subject of interest in ecology. Therefore, the objectives of this paper
were to (i) compare models suitable for handling variance heterogeneity and
(ii) select optimal models to ensure valid statistical inferences from insect count
data. The log-normal, standard Poisson, Poisson corrected for overdispersion,
zero-inflated Poisson, the negative binomial distribution and zero-inflated negative
binomial models were compared using six count datasets on foliage-dwelling
insects and five families of soil-dwelling insects. Akaike’s and Schwarz Bayesian
information criteria were used for comparing the various models. Over 50% of the
counts were zeros even in locally abundant species such as Ootheca bennigseni
Weise, Mesoplatys ochroptera Stål and Diaecoderus spp. The Poisson model after
correction for overdispersion and the standard negative binomial distribution
model provided better description of the probability distribution of seven out of
the 11 insects than the log-normal, standard Poisson, zero-inflated Poisson or zero-
inflated negative binomial models. It is concluded that excess zeros and variance
heterogeneity are common data phenomena in insect counts. If not properly
modelled, these properties can invalidate the normal distribution assumptions
resulting in biased estimation of ecological effects and jeopardizing the integrity of
the scientific inferences. Therefore, it is recommended that statistical models
appropriate for handling these data properties be selected using objective criteria
to ensure efficient statistical inference.
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Introduction

There are many kinds and levels of decisions that can be
made based on insect count data. Count data are widely
used by scientists and regulatory agencies to evaluate the

status of ecosystems and endangered species, the impact of
potentially toxic chemicals (Kennedy et al., 2001) and other
projects including genetically modified crops (Perry et al.,
2003). However, statistical inference from count data poses
several challenges. As in most ecological count datasets
(Fletcher et al., 2005; Martin et al., 2005; Warton, 2005), insect
counts often exhibit two features: a substantial proportion of
the values are zero, and the remainder has a skewed
distribution. Count data also show heterogeneity of
variances among observational groups or populations
(Taylor, 1961). If the sampling variance exceeds the
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theoretical variance, the situation is called overdispersion
(Mullahy, 1997).

A large proportion of entomological research consists of
observational studies where the goal is to explain a pattern
with a series of explanatory variables. To do so, entomolo-
gists have long relied on statistical models assuming that
errors are independently and identically distributed normal
random variables. Such models derive their validity from the
randomization underlying designed experiments (Stephens
et al., 2005). Although departures from this ideal situation are
common in insect count data, in practice, researchers use
these models widely even where the underlying assumption
of homogeneity is guaranteed to be false. Field entomologists
also rarely formally appraise variance heterogeneity in
relation to covariate information. This is in sharp contrast
to the importance of variability, which in its different
forms, is considered as the subject of interest in ecology.
Heterogeneous variances can readily be interpreted biologi-
cally since they may be related to their covariates, and their
statistical significance can be tested.

If not properly modelled, the presence of excess zeros and
variance heterogeneity can invalidate the distributional
assumptions of the analyses resulting in biased estimation
of ecological effects and jeopardizing the integrity of the
scientific inferences (Mullahy, 1997; Fletcher et al., 2005;
Martin et al., 2005). Distribution models used for description
of count data range from single parameter models such as
the Poisson to complicated models like the Pascal Type H
(Wilson et al., 1983). However, few such as the Poisson and
negative binomial distribution are used widely. Often data
do not support only one model as clearly best for analysis
(Chatfield, 1995; Burnham & Anderson, 2002). Therefore,
there is always uncertainty about the operating model that
has given rise to the observations because only a sample
from the population is observed (Zucchini, 2000). This raises
the issue of comparing models to assess which of the models
are adequate for the data and which one could be chosen as
the basis for interpretation, prediction, or other subsequent
use. Currently, there are two basic approaches to model
selection: the classical generalized likelihood ratio test used
for comparing nested models and the new approach based
on information theoretic measures. The likelihood ratio test
is inherently inconsistent and favours larger models
(Dayton, 2003; Johnson & Omland, 2004). Unlike likelihood
ratio tests, information theoretic measures are more consis-
tent and can be used in comparison of nested as well as non-
nested models (Kuha, 2004). Information criteria penalize for
the addition of parameters, and thus select a model that fits
well but has a minimum number of parameters to ensure
simplicity and parsimony (Johnson & Omland, 2004; Kuha,
2004; Stephens et al., 2005).

A variety of penalized information criteria, obtained from
different theoretical starting points, have been proposed in
the literature (Zucchini, 2000; Dayton, 2003; Kuha, 2004).
However, the Schwarz Bayesian information criterion (BIC)
(Schwarz, 1978; Wasserman, 2000) and Akaike’s information
criterion (AIC) (Akaike, 1973) were considered here because
of their popularity (Dayton, 2003; Kuha, 2004). AIC has its
foundation in Kullback–Leibler information discrepancy
(Burnham & Anderson, 2002). From a Bayesian perspective
the BIC is analogous to AIC in that its intent is to assess
models in terms of their fit and complexity. Unlike AIC, the
derivation of BIC rests on several stringent assumptions that
are seldom satisfied with empirical data (Wasserman, 2000;

Zucchini, 2000; Kuha, 2004). BIC is consistent (Zucchini,
2000) and better in extrapolation. The aim of BIC is to
identify the model with the highest probabilities of being the
true model for the data, assuming that one of the models
under consideration is true. Unlike BIC, AIC is defined
without reference to a ‘true model’. Instead, AIC uses
expected prediction of future data as the key criterion of the
adequacy of a model. Although models and statistical
software suitable for analysis of count data exist, researchers
still rely heavily on modelling approaches that assume
homogeneous variance. Therefore, the objectives of this
paper were to (i) compare models suitable for handling
variance heterogeneity and (ii) select optimal models to
ensure valid statistical inferences from insect count data.

Materials and methods

Sources of data

Six datasets collected by the author as part of various
studies in eastern Zambia were re-analysed using models
with different assumptions about mean-variance relation-
ships. Detailed descriptions of the study site and manage-
ment of experiments will be found in earlier reports by the
author (Sileshi et al., 2001, 2002, 2006; Sileshi & Mafongoya,
2003, 2006a,b). The first dataset consisted of counts of
Ootheca bennigseni Weise (Chrysomelidae: Coleoptera), a
serious pest of many legumes in southern Africa (Sileshi &
Kenis, 2003; Sileshi et al., 2006). Beetles were monitored on
beans and cowpeas in experimental fields and two nearby
private farmers’ fields at Msekera in February 2003. One
farm had only cowpeas and the numbers of beetles were
recorded on 60 randomly selected cowpea plants. The other
farm had both bean and cowpea fields. Here beetle counts
were recorded on 60 plants each of bean and cowpea. On the
research farm beetle counts were recorded on 120 plants
each of bean and cowpea.

Datasets 2 and 3 consisted of counts of Diaecoderus
spp. (Curculionidae: Coleoptera) that attack maize and the
leguminous species Sesbania sesban (L.) Merrill, pigeon pea
(Cajanus cajan (L.) Millsp.), Tephrosia vogelii Hook f. and
Crotalaria spp. used in agroforestry (Sileshi & Mafongoya,
2003). Snout beetles were monitored during the 2000 rainy
season in replicated trials consisting of fallows of these
leguminous species. The beetles were counted on ten
randomly selected 3–5-month-old plants. The beetles were
also monitored on maize planted after clearing the legume
fallows. Adult beetles were counted in February 2002 and
2003 on ten randomly selected maize plants in agroforestry
practices (four pure-species and six mixed-species fallows), a
traditional mixed vegetation fallow and monoculture maize
grown with and without fertilizer. The treatments were
replicated four times and arranged in a randomized
complete blocks design (Sileshi & Mafongoya, 2003).

Dataset 4 consisted of counts of adult Mesoplatys
ochroptera Stål (Chrysomelidae: Coleoptera). Counts were
obtained using two-stage stratified random sampling
conducted fortnightly from November 1997 to March 1998
in four fields of one-year-old Sesbania sesban fallows at
Msekera (Sileshi et al., 2002). The fields were divided into
two positions, central and peripheral, each consisting of 50
trees. Fifteen trees were randomly selected from each
position, and the foliage canopy of each tree was divided
horizontally into the lower, middle and upper strata based
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on the number of nodes. Two shoots were randomly selected
from each stratum and the number of adults, egg masses and
larvae were counted on each shoot (Sileshi et al., 2002).

Datasets 5 and 6 consisted of counts of M. ochroptera egg
masses per plant and the predatory bug Deraeocoris ostentans
Stål (Miridae: Heteroptera) from studies described in detail
by Sileshi et al. (2001). Counts of both egg masses and
D. ostentans that prey on the eggs were obtained by sampling
less than one-year old plants at Msekera Research Station.

Dataset 7 consisted of a multivariate count dataset on
soil dwelling Carabidae, Staphylinidae, Curculionidae, Ten-
ebrionidae and Scarabaeidae in the miombo woodland and
agroforestry systems at Msekera. The study areas, treatment,
experimental design and management of the experiments
have been described in detail by Sileshi & Mafongoya
(2006a,b). Sampling was conducted three times between
December 2003 and July 2004. Soil samples were collected
using a soil monolith (25 cmr25 cm and 25 cm depth) placed
over a randomly selected spot, and driven into the soil to
ground level using a metallic mallet.

Comparing frequency distributions

Information on the observed and expected number of
individuals occurring within a series of sampling units was
summarized in frequency distributions. The expected
frequencies were computed assuming the Poisson and
negative binomial distribution (NBD) models. Using the
GENMOD procedure of SAS (SAS Institute, 2003) a
maximum likelihood estimate of the dispersion parameter
(k) of the NBD was obtained with and without covariate
information. The expected probabilities were then calculated
by substituting the sample mean for m and k (with and
without covariates separately) into the probability functions
of the Poisson and NBD (equations 4 and 18 in Davis, 1994).
Histograms were generated using the observed and
expected frequencies for the Poisson and NBD models, and
the percentage of excess zeros were computed relative to the
expected frequency of zeros in each model.

Selection of statistical models

The first modelling approach considered here applied
ANOVA to transformed insect counts. The probabilistic
model assumed the underlying errors of the transformed
count data are all uncorrelated with homogeneous variance,
and hence followed an approximate log-normal distribution
(Perry et al., 2003). The count data were transformed to
natural logarithms, i.e. ln(y+1). However, the assumption of
equality of variance in the log-transformed data was
explicitly tested using Levene’s tests via the GLM procedure
of the SAS system. Normality was tested using the
UNIVARIATE procedure of SAS. Standard and linear mixed
model (LMM) ANOVA were then done on the transformed
values using the ANOVA and MIXED procedures of the SAS
system, respectively. The LMM was chosen because it
extends the ANOVA model by providing a more flexible
specification of the covariance matrix of the error, and allows
for both correlation and heterogeneous variances via a
restricted maximum likelihood (REML) methodology.

The second approach involved explicitly modelling the
distribution of counts assuming that the variance (s2) is
proportional to the mean (m), say s2 =wE(y) =wm where w is a
dispersion parameter and E(y) is the expectation of counts.

The variance equals the mean (i.e. Poisson assumption)
when w= 1, while w> 1 indicates overdispersion. The
Poisson and negative binomial distribution models were
chosen to allow for many zero values of y and for the depen-
dence of variance upon mean abundance for count data,
which is often expressed through Taylor’s power law (Taylor
1961; Perry et al., 2003). Such relationships between the
variance and mean have already been demonstrated for
M. ochroptera andO. bennigseni (Sileshi et al., 2002, 2006; Sileshi
& Kenis, 2003) and Diaecoderus sp. (Sileshi & Mafongoya,
2003). However, this relationship is not known for the five
beetle families. Therefore, the variance-mean relationship for
these beetles was examined using Taylor’s power law.

The Poisson distribution was considered because it arises
under the assumption that insects are distributed randomly
in space and the variance equals the mean. However, insect
count data often exhibit overdispersion, with a variance
larger than the mean (Taylor, 1961). A reasonable criterion
for detecting overdispersion is that the deviance should be at
least twice the number of degrees of freedom, but the actual
presence of overdispersion should then be checked by some
appropriate modelling procedure (Lindsey, 1999). Therefore,
three modelling approaches were considered when the
Poisson model indicated overdispersion. The first method
involved introducing covariates thought to influence abun-
dance using a generalized linear regression model (GLM)
with a logarithmic link (McCullagh & Nelder, 1989). The
second method based on a quasi-likelihood approach
accounted for overdispersion via introduction of a disper-
sion parameter (w) into the relationship between the variance
and mean as s2 =wm. The dispersion parameter was
estimated as a ratio of the deviance to its associated degrees
of freedom (McCullagh & Nelder, 1989). The third method
involved fitting a zero-inflated Poisson (ZIP) to the count
datasets.

To account for overdispersion relative to the Poisson
distribution, the NBD model was considered. One important
characteristic of the NBD is that it naturally accounts for
overdispersion because its variance is always greater than
the variance of a Poisson distribution with the same mean.
The NBD can be derived from the Poisson when the mean
parameter is not identical for all members of the popula-
tion, but itself is distributed with gamma distribution.
Specifically, if l has a gamma distribution then y has a
negative binomial distribution with mean parameters m and
dispersion parameter k (White & Bennetts, 1996). A zero-
inflated negative binomial (ZINB) model was also fitted to
the data.

Under both the Poisson and NBD models, the insect
counts varying over sampling units were assumed to depend
on a vector of explanatory variables (Xi, i.e. time, treatment)
according to the log-linear function:

Log(m) = a+ b1 X1 + b2 X2 + . . .+ bn Xn (1)

where a is the intercept and bi is a parameter to be
estimated for the ith covariate. Parameters of the standard
Poisson and NBD were estimated using the GENMOD
procedure, while ZIP and ZINB were fitted using the
NLMIXED procedures of SAS. The GENMOD procedure
fits GLMs that allow the mean to depend on linear predictors
through a non-linear link function via maximum likelihood,
and it allows the response probability distribution to be any
member of the exponential family. The NLMIXED procedure
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fits models in which both fixed and random effects enter
non-linearly. This procedure enables one to specify a
conditional distribution for the data (given the random
effects) having either a standard form such as the binomial,
Poisson or a general distribution that one codes using SAS
programming statements (SAS Institute, 2003). Goodness-of-
fit and model selection were based on the AIC and BIC
computed as:

AIC=x2ll+2h (2)

BIC=x2ll+h( ln (n)) (3)

where ll is the log-likelihood, h is the number of
parameters in the model and n is the sample size (Dayton,
2003). Since AIC does not depend directly on sample size, it
lacks certain properties of asymptotic consistency (Dayton,
2003). However, in finite samples, adjusted versions of AIC
such as the second-order Akaike information criterion (AICc)

(Hurvich & Tsai, 1989) can behave much better in this
respect (Johnson & Omland, 2004). Hence, in this study the
second-order Akaike information criterion (AICc) correcting
for small sample size (Hurvich & Tsai, 1989) was used. AICc

was computed as:

AICc =x2ll+2h+
2h(h+1)

nxhx1
(4)

To obtain the quasi-likelihood AICc (QAICc), a dispersion
parameter (w) was introduced into equation 3 as:

QAICc =x
2ll

w

� �
+2h+

2h(h+1)

nxhx1
(5)

where w is the ratio of the deviance to its degrees of
freedom, ll, h and n are defined as in equation 2. Smaller
AICc or QAICc values indicated a more parsimonious model
(Johnson & Omland, 2004).
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Fig. 1. Histogram of the observed and expected frequencies of Ootheca bennigseni on beans and cowpeas (a), Diaecoderus sp. on maize (b),
Mesoplatus ochroptera adults (c) and trees (d), and egg masses (e), and the predatory bug Deraeocoris ostentans (f) under the Poisson and
negative binomial model with (NBDcov) and without covariate information (NBDnocov). &, Observed; K, expected Poisson;
, expected NBDcov; , expected NBDnocov.
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Results

Frequency of zeros, normality and variance heterogeneity

The observed and expected frequencies of zeros in the
various insect count datasets are presented in figs 1 and 2.
Over 68% of the sampling units had zero counts of
O. bennigseni. The frequency of zeros was 45 and 39% more
than that expected under the Poisson and NBD models
without covariate information, respectively. Inclusion of
covariate information under the NBD assumption reduced
the percentage of excess zeros to about 21% of that expected
(fig. 1). Diaecoderus counts had 41–62% and 33–34% more
zeros than expected under the Poisson and NBD models,
respectively. However, when the NBD model was extended
by inclusion of covariate information, the frequency of
excess zeros dropped to 24% more than expected. Some
58–80% of the sampling units had zero counts of
M. ochroptera adults, egg masses, and D. ostentans. Similarly,
70–91% of the sampling units had zero counts of the five
beetle families. However, the frequency of zeros was less
than that expected under the Poisson and NBD models for
M. ochroptera, D. ostentans (fig. 1) and the five beetle families
(fig. 2). The observed frequency distribution of all insects

was more right-skewed and platykurtic than that expected
under the Poisson and NBD (figs 1 and 2).

Tests of normality (Shapiro-Wilk statistic) and homo-
geneity of variance (Levene’s test) indicated departure of the
log-transformed data from normality and homogeneity of
variance (table 1) across fixed effects in almost all insect
species and families studied. Strong and positive relation-
ships were found between the variance and mean abun-
dance of the five soil-dwelling beetle families (fig. 3).
Taylor’s power law explained over 86% of the variation in
the variance to mean relationship.

Statistical models

The Poisson model after correction for overdispersion
and the standard NBD model provided better descriptions
of the probability distribution of seven out of the 11 cases.
The Poisson corrected for overdispersion described counts
of Diaecoderus sp. on legumes, adults and egg mass of
M. ochroptera and D. ostentans on S. sesban better than all
other models. The standard NBD model described counts
of O. bennigseni and Diaecoderus sp. on legumes, and
Scarabaeidae in soil samples more parsimoniously than any
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Fig. 2. Histogram of the observed and expected frequencies of (a) Carabidae, (b) Staphylinidae, (c) Curculionidae, (d) Tenebrionidae and
(e) Scarabaeidae under the Poisson and negative binomial model with (NBDcov) and without covariate information (NBDnocov). &,
Observed; K, expected Poisson; , expected NBCcov; , expected NBDnocov.
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other model (table 2). The log-normal model was best only
for description of carabaid and staphylinid count datasets.
According to the AIC, the ZINB was the best for description
of counts of Curculionidae and Tenebrionidae, while the log-
normal model was preferred by the BIC (table 2). In nine out
of the 11 insects, the AIC and BIC selected the same model as
the best. In terms of overall performance, the standard NBD
was the best, while the quasi-likelihood method and log-
normal model stood second and third, respectively. Accord-
ing to both Akaike’s and Bayesian information criteria, the
standard Poisson, ZINB and ZIP stood fourth, fifth and sixth,
respectively, when ranked across datasets.

Table 1 shows the exact probabilities of significance of
covariate effects under the assumptions of log-normal,
Poisson and NBD models. The P values for covariate effects
differed under the assumptions of the various models. The
most striking difference between the various models was in
the standard errors of parameter estimates and the 95%
confidence intervals (table 3). A subset of the data is
presented in table 3 to demonstrate the differences between
the models in parameter estimates. The lower 95% confi-
dence limit for the log-normal was generally higher than all
the other models. Correcting for overdispersion in the
Poisson increased the standard errors and widened the
95% confidence intervals of population densities (table 3).
Generally, the NBD had wider 95% confidence intervals
compared with the log-normal and Poisson in all insect
species and families (data not shown).

Discussion

For all of the insects studied, the log-transformed data
significantly deviated from the assumptions of normality
and homogeneity of variance as expected. From fig. 3 and

earlier studies (Sileshi et al., 2002, 2006; Sileshi & Kenis, 2003;
Sileshi & Mafongoya, 2003), it is clear that the variance of
the counts is proportional to the mean. Over 50% of the
counts were zeros even in locally abundant species such as
O. bennigseni, M. ochroptera and Diaecoderus spp. This is in
agreement with the growing body of literature (Welsh et al.,
1996; Martin et al., 2005; Warton, 2005) demonstrating that
excess zeros are practical phenomena in count data. The
study has also demonstrated that the excess zeros and
variance heterogeneity can be accommodated by adjusting
for overdispersion or inclusion of covariate information
(figs 1 and 2). The presence of excess zeros and over-
dispersion in a data set may arise as a result of patchiness of
the environment, inherent heterogeneity of the species
concerned, imperfect detection of a species or may even be
a sign of inadequacy of the model used (MacKenzie et al.,
2002; Fletcher et al., 2005; Warton, 2005). Zero-inflation is
often the result of a large number of true zero observations
caused by the real ecological effect of interest (Martin et al.,
2005). For example, the study of rare organisms will often
lead to the collection of data with a high frequency of zeros
(Welsh et al., 1996). False zeros occur when the species under
study is present at the time of sampling, but the observer
does not detect it because the species is cryptic or secretive
(MacKenzie et al., 2002). Overdispersion may also arise due
to habitat heterogeneity or biological phenomena such as
aggregation (Mullahy, 1997; Fletcher et al., 2005). Lack of
independence, arising as a result of the innate behaviour of
the insects being studied, may also lead to overdispersion in
counts. For example, M. ochroptera frequently mate through-
out their adult life and a pair behaves almost as an
individual (Sileshi et al., 2002). Lack of independence as in
M. ochroptera and O. bennigseni (Sileshi et al., 2002; Sileshi &
Kenis, 2003) and spatial variation induced by habitat

Table 1. Test for homogeneity of variance in the log-transformed [ln(count+1)] data and statistical significance of
fixed effects under the log-normal (standard ANOVA and linear mixed model (LMM)), Poisson and negative
binomial distribution (NBD) assumptions.

Insect species/family Sample
size

Fixed effects
(DF)

Levene’s
F-test

ANOVA Poisson NBD

Standard LMM

Ootheca bennigseni 420 Farm (2) 94.9 *** < 0.001 < 0.001 < 0.001 < 0.001
420 Crop (1) 35.3 *** < 0.001 0.0012 < 0.001 < 0.001

Diaecoderus (maize) 990 Year (1) 12.9 *** < 0.001 < 0.001 < 0.001 < 0.001
990 Practice (12) 4.5 *** < 0.001 < 0.001 < 0.001 < 0.001

Diaecoderus (legumes) 210 Legumes (6) 8.3 *** < 0.001 < 0.001 < 0.001 < 0.001
Mesoplatys ochroptera
adults

1440 Date (7) 14.2 *** < 0.001 < 0.001 < 0.001 < 0.001

1440 Position (1) 0.2ns 0.848 0.849 0.751 0.966
1440 Stratum (2) 54.6 *** < 0.001 < 0.001 < 0.001 < 0.001

M. ochroptera egg mass 240 Date (1) 19.2 *** < 0.001 < 0.001 < 0.001 < 0.001
D. ostentans 240 Date (1) 10.6 *** < 0.001 < 0.001 < 0.001 < 0.001

240 Egg mass (1) 1.3ns 0.010 0.813 0.774 0.876
Carabidae 196 Land-use (6) 3.8 *** 0.008 0.006 < 0.001 0.002

196 Month (2) 7.4 *** 0.002 < 0.001 < 0.001 < 0.001
Staphylinidae 196 Land-use (6) 2.0ns < 0.001 < 0.001 < 0.001 0.001

196 Month (2) 11.7 *** < 0.001 < 0.001 < 0.001 < 0.001
Curculionidae 196 Land-use (6) 7.2 *** < 0.001 < 0.001 < 0.001 < 0.001

196 Month (2) 0.2ns 0.807 0.782 < 0.001 0.802
Tenebrionidae 196 Land-use (6) 3.9 *** 0.002 0.003 < 0.001 0.001

196 Month (2) 2.4ns 0.034 0.045 0.017 0.025
Scarabaeidae 196 Land-use (6) 11.4 *** < 0.001 < 0.001 < 0.001 < 0.001

196 Month (2) 2.6ns 0.004 0.017 < 0.001 0.004

*, ** and *** indicate significance at the 5, 1 and 0.1% levels; ns, not significant.
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heterogeneity in counts of Diaecoderus (Sileshi & Mafongoya,
2003) could have led to the observed overdispersion.
The high frequency of zeros observed in the beetle counts
from soils may be due to the multivariate nature of the count
(Li et al., 1999; Warton, 2005). Sampling of many taxa
simultaneously is not usually limited to habitats where all
taxa might occur, hence multivariate abundance data are
naturally expected to contain more frequent zeros (Warton,
2005).

For seven out of the 11 insects, the quasi-likelihood
method and NBD model yielded better statistical inference
than one based on the log-normal, standard Poisson, ZIP or
ZINB. The log-normal and Poisson models had narrower
95% confidence intervals of population densities, and hence
their estimates may not be consistent when counts show
overdispersion. Poisson estimates are consistent when the
variance is proportional (not just equal) to the mean. Thus,
Poisson standard errors tend to be conservative in the

presence of overdispersion. If the Poisson is the chosen
model and if we are sure that the lack of fit is not due to poor
specification of the systematic part of the model, the
standard errors need to be corrected via the quasi-likelihood
method (McCullagh & Nelder, 1989). For practical reasons,
fitting the NBD may be more preferable to the log-normal
ANOVA or the more complicated route of fitting zero-
inflated models. The primary advantage of the NBD is that it
does not assume homogeneous variances but actually
modelled heterogeneity in variance reflected by the disper-
sion parameter (k). This parameter provided additional
insight not explicit in the log-normal ANOVA model,
contributing more information about the data being
analysed (White & Bennetts, 1996). ANOVA tests whether
there are differences in means. Of equal biological interest is
whether two populations are distributed similarly even if the
means do not differ. Ignoring overdispersion in the analysis
would lead to underestimation of standard errors, and
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Fig. 3. Relationship between variance and mean abundance of (a) Carabidae, (b) Staphylinidae, (c) Curculionidae, (d) Tenebrionidae
and (e) Scarabaeidae in the soil under miombo woodland and agroforestry species.
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consequent overstatement of significance in hypothesis
testing. Comparison of P-values (table 1) and 95% confidence
intervals of population densities (table 3) suggest that
statements of statistical significance about fixed effects and
parameter estimates are greatly influenced by the choice of
the model. Therefore, use of inappropriate models can result

in biased estimation of effects and erroneous predictions and
conclusions regarding ecological processes.

It is recommended that researchers select models appro-
priate for handling variance heterogeneity rather than
attempting to homogenize variances using transformations
or resorting to non-parametric methods. Information criteria

Table 2. Second-order Akaike information criteria (AICc) and Bayesian information criterion (BIC) for comparing
the global model (containing all covariates) under the log-normal (mixed ANOVA), Poisson and negative binomial
model assumptions for foliar and soil-dwelling insects.

Insect species Criterion Mixed
ANOVA

Poisson Poisson Negative binomial

Quasi-likelihood ZIP NBD ZINB

Ootheca bennigseni AICc 564.4 177.8 158.8 1111.3 87.2 1050.8
BIC 568.4 184.1 165.5 1147.2 93.9 1074.9

Diaecoderus sp. (maize) AICc 2062.6 915.4 417.0 3912.0 259.4 3532.4
BIC 2067.5 953.4 455.8 3955.9 298.2 3561.7

Diaecoderus sp. (legumes) AICc 381.1 318.1 196.5 650.4 279.3 639.4
BIC 384.4 320.0 198.5 679.7 281.3 659.0

Mesoplatys ochroptera adult AICc 1881.8 2043.7 1652.0 2926.6 1768.2 2795.2
BIC 1887.0 2151.1 1760.3 2973.9 1876.5 2826.8

M. ochroptera egg mass AICc 347.7 241.3 174.8 696.2 204.0 661.4
BIC 351.1 242.3 176.1 726.7 205.3 681.9

D. ostentans AICc 436.1 439.6 228.8 696.2 336.0 661.4
BIC 439.6 442.0 231.4 726.7 338.6 681.9

Carabidae AICc 158.6 271.2 342.7 294.1 273.9 287.0
BIC 161.8 267.6 338.4 322.6 269.6 306.2

Staphylinidae AICc 113.2 222.8 333.3 239.9 224.3 232.9
BIC 116.4 219.2 329.0 268.5 220.0 252.1

Curculionidae AICc 99.8 186.2 293.1 98.8 179.9 96.7
BIC 102.9 182.6 288.8 127.3 175.6 115.9

Tenebrionidae AICc 215.6 329.4 347.5 326.6 330.9 201.0
BIC 218.8 325.8 343.2 355.1 326.6 220.3

Scarabaeidae AICc 268.8 191.4 173.3 455.6 155.9 419.8
BIC 271.9 187.8 169.0 484.1 151.6 439.1

Bold-faced entries in a row indicate the best model according to AICc and BIC for each species or family of insects.
NBD, negative binomial distribution; ZINB, zero-inflated negative binomial; Zip, zero-inflated Poisson.

Table 3. The 95% confidence intervals of mean densities of Ootheca bennigseni on food legumes in three farms and
Diaecoderus spp. on maize grown in agroforestry practices during 2002 and 2003 under various model assumptions.

Insect species Fixed effects Log-normal Poisson NBD

Before
scaling

After
scaling

O. bennigseni Farm 1 (Mr Banda) 2.1–2.5 1.8–2.4 1.8–2.5 1.7–2.6
Farm 2 (Mr Nyirenda) 2.3–3.0 2.2–3.0 2.2–3.1 2.0–3.5
Farm 3 (Research station) 1.0–1.1 0.01–0.06 0.01–0.06 0.01–0.06
Bean 1.6–1.8 0.3–0.5 0.3–0.6 0.3–0.6
Cowpea 1.9–2.1 1.3–1.6 1.2–1.7 1.1–1.8

Diaecoderus spp. Year 2002 2.4–2.8 2.3–2.6 2.2–2.7 2.2–2.8
Year 2003 1.5–1.7 1.0–1.2 1.0–1.3 1.0–1.3
Cajanus cajan (Cc) 1.4–1.9 0.9–1.3 0.8–1.6 0.8–1.5
Crotalaria grahamiana (Cg) 1.3–1.8 0.7–1.1 0.6–1.3 0.6–1.3
Cc+Cg 1.5–2.1 0.9–1.4 0.8–1.6 0.8–1.6
Fertilized monoculture maize 2.0–2.6 2.0–2.6 1.8–2.9 1.7–3.1
Unfertilized monoculture maize 1.3–1.8 0.7–1.2 0.6–1.4 0.7–1.3
Traditional grass fallow 1.3–1.7 0.6–1.0 0.5–1.1 0.5–1.1
Sesbania sesban (Ss) 2.0–2.7 1.7–2.3 1.5–2.6 1.4–2.7
Tephrosia vogelii (Tv) 2.3–3.0 2.2–2.9 2.0–3.1 1.9–3.3
Ss+Cc 2.2–2.9 2.2–2.9 2.0–3.2 1.9–3.4
Ss+Cg 2.4–3.2 2.5–3.3 2.3–3.6 2.1–3.8
Ss+Tv 1.9–2.6 1.6–2.3 1.5–2.6 1.4–2.7
Tv+Cc 2.5–3.4 2.5–3.3 2.3–3.6 2.1–3.9
Tv+Cg 1.5–2.0 0.9–1.4 0.8–1.7 0.8–1.6
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provided an objective way of determining which model
among a set of models is most appropriate for the data at
hand. The primary disadvantage of testing various models is
that some models are computationally demanding especially
for complex experimental designs. However, software and
computer programs that can handle these calculations with
relative ease are appearing.
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planted fallows in eastern Zambia. BioControl 46, 289–310.

Sileshi, G., Baumgaertner, J., Sithanantham, S. & Ogol,

C.K.P.O. (2002) Spatial distribution and sampling plans
for Mesoplatys ochroptera Stål (Coleoptera: Chrysomelidae)
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Appendix 1

SAS procedures used for fitting various probability distributions

/*The following MIXED procedure estimates the response with 
covariates Farm and Crop assuming log-normal error distribution*/ 
Proc mixed data=Ootheca; 
Class Farm Crop; 
model tcount = Farm Crop; /*tcount is log10(count+1)*/ 
lsmeans Farm Crop/ adjust=Tukey CL; 
Run; 
 
/*The following GENMOD procedure estimates the response with 
covariates Farm and Crop assuming standard Poisson error 
distribution*/ 
Proc genmod data=Ootheca; 
Class Farm Crop; 
model Count = Farm  Crop/dist = poisson link = log type3; Run; 
 
/*The following GENMOD procedure estimates the response with 
covariates Farm and Crop and correcting for over-dispersion in the 
Poisson distribution*/ 
Proc genmod data=Ootheca; 
Class Farm Crop; 
model Count = Farm  Crop/dist = poisson link = log dscale type3; Run; 
 
/*The following NLMIXED procedure fits a zero-inflated Poisson 
distribution*/ 
proc nlmixed data=Ootheca; 
parameters a0=0 a1=0 a2=0 a3=0 b0=0 b1=0 b2=0; 
linpinfl = a0 + a1*VAR1 + a2*VAR2 + a3*VAR1*VAR2; 
infprob = 1/(1+exp(-linpinfl)); lambda = exp(b0 + b1*VAR1 +b2*VAR2); 
if Count=0 then ll = log(infprob + (1-infprob)*exp(-lambda)); 
else ll = log((1-infprob)) + Count *log(lambda)-lgamma(Count+1)-lambda;
model Count ~ general(ll); 
predict (1-infprob)*lambda out = PREDICTED_Count; run; 
 
/*The following GENMOD procedure estimates the response with 
covariates Farm and Crop assuming negative binomial error 
distribution*/ 
Proc genmod data=Ootheca; 
Class Farm Crop; 
model Count = Farm  Crop/dist = nb link = log type3; Run; 
 
/*The following NLMIXED procedure fits a zero-inflated negative 
binomial distribution*/ 
proc nlmixed data=Ootheca;  
parms a0=0 a1=0 b0=0 b1=0; 
linpinfl = a0 + a1*G1; 
psi = 1 / (1 + exp(linpinfl)); 
eta_nb = b0 + b1*G1; lambda = exp(eta_nb); 
p0 = psi + (1-psi)*exp(-(Count+(1/k))*log(1+k*lambda)); 
p_else = (1-psi)* exp(lgamma(Count+(1/k))-lgamma(Count+1)-lgamma(1/k)+ 
Count*log(k*lambda)-(Count+(1/k))*log(1+k*lambda)); 
if Count=0 then loglike = log(p0); 
else loglike = log(p_else); 
model Count ~ general(loglike); 
run; 
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