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Large-scale monitoring programmes often make inferences about insect abundance based
on count data collected using some probability-based sampling technique. Unfortunately, it
is rather difficult to obtain reliable estimates of insect abundance from count data unless the
scale is very fine or localized. A major issue, that has to be explicitly addressed when estimat-
ing insect abundance, is the problem of false negatives. The objective of this paper is to
demonstrate a simple approach to estimate insect abundance from occupancy data collected
using presence—absence surveys. Using count data on the seed-feeding insect, Eurytoma sp.
(Hymenoptera: Eurytomidae), and the alien invasive insect, Heteropsylla cubana
(Homoptera: Psyllidae), this paper has demonstrated the application of (1) generalized
linear models for modelling abundance and detection probability, (2) information criteria for
model selection and (3) occupancy-abundance models for precise estimation of insect abun-
dance. Potential applications of this approach in monitoring colonization of sites by alien
invasive species and local extinction of species endangered by habitat fragmentation are also

indicated.
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INTRODUCTION

The number of individuals, or the abundance, of
a species is a fundamental ecological parameter
(Andrewartha & Birch 1954) and a critical consid-
eration when making management and conserva-
tion decisions (Sileshi 2007). Most monitoring
programmes use counts of insects as proxies of
true abundance, and there are many kinds and
levels of decisions that need to be made based on
insect abundance (Sileshi 2006, 2007). An immedi-
ate decision might be to spray a field or not; to re-
ject a plant shipment or not at a port of entry; and
to declare an alien species, whether introduced
insect biocontrol agent or pest as established or
invasive. Other decisions may include targeting
hot-spots of abundance for conservation of
endangered species.

Akey interest in large-scale monitoring of insect
species lies in detecting spatial and temporal
changes in abundance. However, large-scale
monitoring studies often make inferences about
large areas by collecting information from sample
units selected by some probability-based sampling
technique. Unfortunately, it is rather more difficult
to obtain reliable estimates of abundance of a
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species unless the scale is very fine or localized
(Speight et al. 1999; He & Gaston 2003). First, data
resulting from simple count surveys can be biased
to an unknown degree by heterogeneous and
imperfect detection (Pollock ef al. 2002). The second
problem associated with monitoring small and
often abundant insects such as psyllids, mites and
aphids is the time required to process sufficient
sampling units to obtain a reliable estimate of
abundance (Sileshi 2006; 2007).

One potential approach to reducing effort in
large-scale monitoring programmes involves a
shift of interest from abundance to patch occu-
pancy (probability of occurrence) (Freckleton et al.
2005; Gaston et al. 2000; He & Gaston 2003;
Mackenzie & Nichols 2004; Royle & Nichols 2003).
Patch occupancy is usually estimated using
presence—absence data collected as part of biologi-
cal surveys, ecological monitoring or pest manage-
ment programmes. The results of such surveys are
used to assess the efficacy of management actions,
to look for species declines or reductions in range,
or tomodel the habitat of a species (Tyre et al. 2003).
Presence—absence sampling is a shortcut method
that saves time, in particular, for small insects that
occur at high densities and where the population
has to be sampled several times during a season
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(Wilson & Room 1983; Nachman 1981). The
method is non-destructive and thus interferes
relatively little with the population being studied,
and avoids long-term changes in the habitat or the
insect population.

Estimation of occupancy rates and associated
dynamics including extinction and colonization
from presence-absence data is fundamental to
many habitat models (Cabeza et al. 2004), meta-
population studies (Hanski & Gilpin 1997) and
monitoring efforts (Joseph et al. 2006; Mackenzie &
Nichols 2004). Interest in patch occupancy, in a
population monitoring context (Joseph et al. 2006),
has been motivated by the observation that the
proportion of areas occupied by a species increases
with its abundance among those areas, and again
that this is manifest from micro- to macro-spatial
scales both for a given species at different times or
in different regions (Gaston et al. 2000; Kunin et al.
2000; He & Gaston 2003; Warren et al. 2003). Hence,
occupancy can be used as a surrogate for abun-
dance estimation (MacKenzie & Nichols 2004).

A significant aspect of the abundance-occu-
pancy relationship is that it may be used to predict
how the size of the total or regional population of a
species changes with occupancy or local density
(Gaston et al. 2000; Freckleton et al. 2005). It has
been observed widely that the local abundance
and regional distribution of species tend to be
correlated positively (Hartley 1998), such that
species with low abundance within sites (i.e.
average numbers or densities of individuals) also
tend to occupy fewer sites (i.e. the area or range of
a species at a national or continental scale), while
species with high abundance also tend to occupy
a large number of sites (Gaston et al. 2000).
Moreover, if local abundance is related to habitat
quality, then the abundance—occupancy relation-
ship can be used to predict how the total size of a
population varies as a function of habitat quality.

Although occupancy-abundance models hold
great potential for monitoring of invasive alien
insects, conservation status of local species and
performance of exotic biocontrol agents, it has not
yet been formally applied in insect ecology. The
problem has been that until recently no attempt
has been made to incorporate detectability into
occupancy-abundance relationships for insect
species. Therefore, the objective of this paper is to
demonstrate a simple approach to estimate insect
abundance from occupancy data collected using
presence-absence surveys. Using field data on the

Table 1. Definition of parameters used in this paper.

Parameter  Definition

a The intercept term in regression models

p Parameter describing the influence of
covariates in regression models

u Abundance parameter of the negative
binomial distribution

A Abundance parameter of the Poisson.
For the Poisson distribution 4 = i = ¢

k Dispersion parameter of the negative
binomial distribution

N; Abundance of a species in a set of
spatial locations i

Y Occupancy (probability of occurrence)

P Detection probability

0 Number of parameters estimated for a
given model

© Dispersion statistic; residual deviances

divided by its degrees of freedom

seed-feeding insect, Eurytoma sp. (Hymenoptera:
Eurytomidae), and the alien invasive species,
Heteropsylla cubana (Homoptera: Psyllidae),
methods for valid estimation of abundance and
occupancy parameters are demonstrated.

METHODOLOGY

Characterizing abundance and occupancy
Abundance and occupancy surveys involve
visiting sites multiple times within a season and
examining relevant sampling units where the
target species is either detected or not detected
(MacKenzie et al. 2002; Royle & Nichols 2003;
Royle et al. 2005). The goal is often to estimate
parameters (Table 1), especially abundance, know-
ing the species is not always detected perfectly
even when present (Bailey et al. 2004). Abundance
data are collected by complete enumeration,
counting all individuals, in well-defined sampling
units. Occupancy data are collected by recording
whether any individuals of interest are present
or absent or more specifically detection or non-
detection of the species. In practice, counts or
some other ordinal measures of abundance may
be observed, and such data can be reduced to the
binary responses of presence or absence (Royle
etal. 2005). In cases where animals are counted, the
counts can be viewed as realizations of a binomial
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random variable with index N; (local abundance)
and detection probability p (Royle & Nichols,
2003). At each visit, an effort has to be made to
detect the insect species of interest, producing a
detection history for each site. However, several
design issues have to be considered, such as strati-
fied random sampling, cluster sampling, random
transects and multistage sampling (Leather &
Watt 2004).

When estimating both abundance and occupancy,
an issue that has to be explicitly addressed is the
problem of false negatives or imperfect detection
of a species (Gu & Swihart 2004; MacKenzie et al.
2003; Royle & Nichols 2003; Tyre et al. 2003). This
problem arises when a visit to a site or examination
of the chosen sampling unit fails to record the
species of interest when it is in fact present. Failure
to detect the species may be a consequence of
either true absence or nondetection due to various
factors (Gu & Swihart 2004). Detectability may
vary among species, observer experience, survey
methodology, and temporally due to seasonal
behavioural patterns, or spatially due to site-
specific habitat characteristic that affect abun-
dance. Most ecological sampling methods may
lead to false-negatives and underestimate abun-
dances even of common insects (Speight et al.
1999) if they are mobile or concealed, e.g. soil-
dwelling, seed-feeding and stem-boring. Even
modest false-negative errors can have significant
influence on ecological conclusions drawn from
the data. The solution to this problem is to estimate
the false-negative rate, and how it varies with
habitat or other covariates. Several workers (Mac-
Kenzie et al. 2002; Gu & Swihart 2004; Royle &
Nichols 2003; Royle et al. 2005; Tyre et al. 2003) have
proposed modelling frameworks that provide for
directly estimating the effect of factors that lead to
variations in abundance and detection probability.
This framework allows one to determine how
abundance and occupancy change in response
to environmental, habitat and other landscape
characteristics.

For count data, the most obvious modelling
approach is a Poisson (Lawless 1987; Cameron &
Trivedi 1998) generalized linear model (GLM)
explaining variation in the mean of local abun-
dance (Ni). Poisson regressions involve explicitly
modelling the distribution of counts assuming
that the variance (0%) is proportional to the mean
(A); say 0> = ¢, where ¢ is a dispersion parameter
(Cameron and Trivedi, 1998). The variance equals

the mean when ¢ = 1, while ¢ > 1 indicates over-
dispersion in the Poisson model. In the GLMs, the
dependent variable (N;) is assumed to have a Pois-
son distribution with parameter 4 which, in turn,
depends on a vector of explanatory variables (or
covariates X;) as:

Log(A)=a+ B, X, + B, X, +.+8,X, , (1)

where « is the intercept, X is the value of the n-th
measurable covariate, and f; is a parameter to be
estimated for the n-th covariate.

For the Poisson model to apply, the assumption
of randomness, mutual independence of individual
insects, must exist. Hence, the Poisson regression
model is too restrictive for count data (Cameron &
Trivedi 1998; Saha & Paul 2005). The fundamental
problem is that the distribution is parameterized
in terms of a single scalar parameter (1) so that all
moments of y are functions of . In many insects a
Poisson density predicts the probability of a zero
count to be considerably less than is actually
observed in a sample (Sileshi 2006, 2007). A second
and more obvious way that the Poisson is deficient
is that for count data the variance usually exceeds
the mean (overdispersion), while the Poisson
implies equality of variance of mean. Large over-
dispersion can lead to grossly deflated standard
errors and inflated statistics in the usual maximum
likelihood output (Cameron & Trivedi, 1998). One
can use a conventional dispersion statistic to assess
overdispersion and goodness-of-fit of the Poisson
model.

The negative binomial distribution is more
appealing in some instances because it allows the
density of animals to vary spatially. It has also been
shown to be more robust for modelling zero-
inflated and overdipersed insect count data
(Sileshi 2006). The negative binomial distribution
is described by a mean parameters (u) and disper-
sion parameter (k). The variance of the negative
binomial distribution is equal tou + ku®. According
to Johnson & Kotz (1969) the NBD is a mixture of
Poisson distributions such that the expected
values of the Poisson distribution vary according
to a gamma (Type III) distribution (Sileshi 2007). It
has been shown that the limiting distribution of
the NBD, as the dispersion parameter (k) approaches
zero, is the Poisson. When k is an integer, the NBD
becomes the Pascal distribution, and the geometric
distribution corresponds to k = 1. The log series
distribution occurs when zeros are missing and
as k - o (Saha & Paul 2005). To relate trends in
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abundance to the explanatory variables (X;)
equation 1was used. Accommodating trend as a
parameter allows one to model it directly as a
function of covariates, for instance, to test for
temporal or habitat-specific differences. This
approach allows one to directly incorporate
temporal changes in abundance into the model as
a parameter to be estimated.

In characterizing occupancy, the underlying
distribution is assumed to be a binomial distribu-
tion. Here we are interested in models for detection
probability (p), which can vary according to some
of the values of explanatory variables (X1, X2, X3,
Xu). For such data, the standard method of estima-
tion is a generalized linear model (GLM) (Sileshi
2007) implemented using a maximum likelihood
procedure such as logistic regression. To relate the
probability (p) of detecting occupancy to the n-th
explanatory variables (X;) we write a GLM of the
following form:

Logit(p)=a+ B, X, + B, X, +.46, X, , @)

where the logit function is the canonical link for
the binomial distribution, « is the intercept and f3;
is a parameter describing the influence of co-
variate X.

Often data do not support only one model as
clearly best for analysis (Burnham & Anderson,
2002). Therefore, there is always uncertainty about
the operating model that has given rise to the
observations because only a sample from the
population is observed (Sileshi 2006). This raises
the issue of comparing models to assess which of
the models are adequate for the data and which
one could be chosen as the basis for interpretation,
prediction, or other subsequent use. Currently,
there are two basic approaches to model selection:
the classical generalized likelihood ratio test used
for comparing nested models and the new approach
based on information theoretic measures. Unlike
likelihood ratio tests, information theoretic
measures are more consistent and can be used in
comparison of nested as well as non-nested
models (Johnson & Omland 2004). Using informa-
tion measures, one seeks a model that loses as little
information as possible or a model that is nearest
to the truth (Burnham & Anderson 2002).

Relating abundance with occupancy

A suite of empirical models, generally known
as occupancy-abundance models, are widely em-
ployed to relate abundance with occupancy

(Gaston et al. 2000). The fundamental relationship
between abundance and occupancy has been
recently elaborated by many workers (He &
Gaston 2003; Royle et al. 2005). The simplest
procedure relating abundance with occupancy
may be derived by assuming that the individuals
of the subject species are randomly and independ-
ently distributed in space (Wilson & Room 1983;
Wright 1991). For this reason, the Poisson is a
standard null model for the distribution of animals
in many ecological studies (Royle et al. 2005).
Under this assumption patch occupancy () and
abundance (1) can be predicted from the Poisson
distribution (Wright 1991; Royle et al. 2005; Sileshi
et al. 2006) as:

p=1-exp™, ®)
where the parameter A = u = ¢” (the variance) for
the Poisson distribution.

For species that show aggregated spatial pattern,
the model relating patch occupancy with abun-
dance can be derived from the negative binomial
distribution as (He & Gaston 2003; Royle et al. 2005;
Sileshi 2006):

w=1- [1+ %) , )

where kis a spatial aggregation parameter defined
in the domain of (-, —u) and (0, ©). When k < —,
occupancy is derived from the positive binomial
distribution that describes spatial regularity, and
whenk > 0, itis derived from the negative binomial
distribution for spatial aggregation (He & Gaston
2003). There are different methods of estimating k
(Saha & Paul 2005). However, extensions of the
maximum likelihood method are probably more
appropriate to the generalized linear regression
situation (Lawless 1987; Saha & Paul 2005).

Application of the methods to Eurytoma and
psyllid data

Eurytoma sp. (Hymenoptera: Eurytomidae) has
been identified as one of the major insect limiting
production of quality seeds of the multipurpose
agroforestry tree, Sesbania sesban (Sileshi 2003).
Though not tested yet as weed biocontrol agents,
Eurytoma has the potential to limit seed produc-
tion by Sesbania should it become invasive outside
its native range (Sileshi 2003). Seed damage was
monitored monthly in Sesbania-improved fallow
fields and isolated natural stands during 1997-
2000 and 2005. Sesbania pods were sampled once
every month when they were available on the
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plants. During each sampling occasion, 50 or more
pods of different levels of maturity were collected
randomly from 10 or more plants. The pods were
then placed individually in Petri dishes for rearing
of seed-feeding insects. Seeds were extracted from
the pods and each seed carefully examined for exit
holes and evidence of insect damage (Sileshi 2003).
The number of pods and seeds per pod damaged
by Eurytoma were recorded based on prior knowl-
edge of their damage symptoms.

Since a single insect attacks a seed of Sesbania, the
number of seeds damaged per pod was used as
an index of abundance. The proportion of seeds
damaged per pod was used as an index of occu-
pancy. The effects of year, month of sampling and
stand (either as pure fallow or isolated stand) on
abundance of Eurytoma per pod were evaluated
using a log-linear model as: Log(u) = a + b1 Year +
bxMonth + bsSatnd. Assuming either Poisson or
negative binomial distributions, eight models
were considered for Eurytoma abundance. The
first model under either the Poisson (Poissonl) or
negative binomial distribution (NBD1) assumption
contained only the intercept, while models 2-8
contained the individual covariates or combina-
tions of covariates (Table 2). Parameters (Table 1) of
the various models were estimated using the
GENMOD procedure of the SAS system (SAS
2003), which produces maximum likelihood
estimates of the regression parameters for the
Poisson and negative binomial distributions. The
SAS codes used for each model are presented in
Appendix 1. The residual deviances divided by
their respective degrees of freedom (D/DF = ¢)
judge adequacy of a model. If the regression
model is adequate, the expected value of ¢ will be
close to unity. Otherwise, the validity of the model
could be doubtful.

The count data were converted to the binary
responses of detection (when count > 0) and
non-detection (when count = 0). The effects of
covariates on detection probability was also
assessed using a logit-linear model as: Logit(p) =
a +biYear+ boMonth+ bsSatnd. Assuming binomial
error distribution of detection/non-detection,
eight models were considered. The first model
(Logistic 1) contained only the intercept, while
models 2-8 contained the individual covariates or
combinations of covariates (Table 2). Parameters,
defined in Table 1, of the various models were
estimated using the LOGISTIC procedure of the SAS
(Appendix 2), which produces maximum likeli-

hood estimates of the logistic regression parame-
ters.

The leucaena psyllid, Heteropsylla cubana
(Homoptera: Psyllidae), a pest of the tropical
agroforestry tree Leucaena leucocephalla is probably
most notable for its dramatic spread across conti-
nents (Hassan et al. 1994; Day 1999; Macdonald
et al. 2003). Starting its journey from its native
home in Central America in 1986, it reached Africa
in 1991. Now it is found throughout most of Africa
where L. leucocephalla is planted. As populations of
the psyllid can increase rapidly creating an over-
abundance in the tropics, estimating abundance
even on a single tree with a reasonable degree of
accuracy becomes almost an impossible task
(Hassan et al., 1994). The psyllid populations were
monitored in April/May 2005 in four experiments
established in 1991,1992, 1997 and 1999 at different
sites at Msekera (Sileshi 2007). These experiments
have been described in detail in Sileshi (2007). In
all the trials, trees were cut to a height of 30 cm
above ground after three years of growth and
allowed to coppices (re-sprout) in the subsequent
years where the shoots were cut back to fertilize
maize crops. A cluster of 10 adjacent stumps were
selected in every replicate of each experiment, and
the number of psyllids per shoot and number of
infested shoots per stump were recorded. The
sampling unit from one stump comprised of a
randomly selected shoot with three fully expanded
leaves. Here the shoot was defined as the growing
point including the first unfurled leaf (Day 1999).
The number of psyllids per shoot and proportion
of infested shoots per stump constituted indices of
local abundance and occupancy, respectively.

The potential effects of site on abundance of
psyllids was assessed using a log-linear model as:
Log(u) = a + by site. After reducing the count data
into detection/non-detection data, the effect of site
on detection probability of psyllids was evaluated
using a logit-linear model as Logit(p) = a + b site.
Alternative models were considered for both
abundance and detection probability of psyllids.
Model parameters for abundance and detection
probability were estimated using SAS procedures
as described for Eurytoma.

The alternative models were compared using
the Akaike Information Criterion (AIC), which
evaluates models based on their likelihood. The
second-order Akaike Information Criterion (AIC,)
correcting for small sample size was used for
comparing the models.



94

African Entomology Vol. 15, No. 1, 2007

Table 2. Parameters, goodness-of-fit of abundance and occupancy models of Eurytoma and model selection based
on second-order Akaike information criteria (AIC;) and Akaike weights (AIC.,).

Variable Model Covariates in model ® A,uorp k AIC, AIC,,

Abundance  Poisson1 No covariate 6.1 8.3 - -19325.0 0
Poisson2 Year 5.4 10.5 - —-20027.6 0
Poisson3 Month 5.3 7.2 - —-20155.4 0
Poisson4 Stand 6.1 8.4 - -19321.6 0
Poisson5 Year Month 51 10.0 - —20377.8 0
Poisson6 Year Stand 54 9.9 - —-20053.0 0
Poisson7 Month Stand 5.3 6.9 - -20157.5 0
Poisson8 Year Month Stand 5.0 9.3 - -20393.9 1.0
NBD1* No covariate 1.2 8.3 0.894 —22350.2 0
NBD2 Year 1.3 104 0.777 —-22439.3 0
NBD3 Month 1.3 7.2 0.741 —22460.9 0
NBD4 Stand 1.2 8.4 0.894 —22346.8 0
NBD5 Year Month 1.3 10.8 0.698 -22496.4 0.83
NBD6 Year Stand 1.3 10.1 0.775 —22440.5 0
NBD7 Month Stand 1.3 7.0 0.741 —22457.2 0
NBD8 Year Month Stand 1.3 10.5 0.696 -22493.3 0.17

Occupancy  Logistict No covariate 10.6 0.81 - 1012.7 0
Logistic2 Year 2.5 0.99 - 681.1 0
Logistic3 Month 6.5 0.72 - 811.4 0
Logistic4 Stand 10.5 0.86 - 1003.5 0
Logistic5 Year Month 1.5 0.99 - 648.6 0.89
Logistic6 Year Stand 2.5 0.77 - 681.1 0
Logistic7 Month Stand 2.5 0.76 - 813.0 0
Logistic8 Year Month Stand 15 0.99 - 652.7 0.11

¢, A, u, pand k are defined in Table 1.
*NBD = negative binomial distribution.

2K(0+1)

AIC =2LL+20+——",
C, +20+ 01 (5)

where LL is the log likelihood, 6 is the number of
parameters in the model and 7 is the sample size.
In general, models with lower AICc scores are
considered to be better candidates than those with
higher scores. Akaike weights (AIC,) were calcu-
lated from AIC. AIC, indicates the probability
that the model is the best among the whole set
of candidate models. Therefore, it provides a
measure of the strength of evidence for each
model (Johnson & Omland 2004).

Maximum likelihood estimates of the dispersion
parameter (k) of the negative binomial distribution
models (NBD1-8) of Eurytoma (Table 2) and psyllid
(Table 3) abundance were incorporated into
Equation 4 to derive the occupancy-abundance
relationship. Mean abundance values were calcu-
lated based on the best model from the GLMs
(Tables 2, 3) for Eurytoma and psyllids. Hence, the
predicted occupancy of Eurytoma was obtained by

inserting the average number of damaged seeds
per pod for each year and month (NBD5) and the
corresponding value of k into Equation 4. For the
sake of comparison, the occupancies predicted
by the Poisson and the worst negative binomial
distribution model without covariates (NBD1)
were obtained for Eurytoma and psyllids.

The predicted abundances (4 or 1) were estimated
from the proportion of damaged seeds computed
based on the best model (Logistic5) for Eurytoma
(Table 2). The proportion of shoots infested by
psyllids was computed based on both Logisticl
and Logistic2 (Table 3). Then abundance was
predicted by inserting the occupancy values and
the dispersion parameter (k) thus computed into
Equations 6 and 7 (Sileshi et al., 2006) for the
Poisson and negative binomial distribution,
respectively:

A=—In(1-9)

u=k(1-y)=1).

©)
@)
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Table 3. Parameters, goodness-of-fit of abundance and occupancy models of leucaena psyllid and model selection
based on second-order Akaike information criteria (AIC;) and Akaike weights (AIC.).

Variable Model Covariates in model 1 A,uorp k AIC, AIC,,

Abundance  Poisson1 No covariate 10.89 15.6 2 -19738.8 0
Poisson2 Site 10.70 20.5 2 —19828.0 1.0
NBD1* No covariate 1.18 15.6 0.85 —22377.6 0.62
NBD2 Site 1.19 20.5 0.79 —22376.6 0.38

Occupancy  Logistic1 No covariate 0.89 0.93 2 193.8 0.97
Logistic1 Site 0.93 0.93 2 201.0 0.03

¢, A, u, pand k are defined in Table 1.
*NBD = negative binomial distribution.

RESULTS

Abundance

Examination of the dispersion statistic (¢) shows
that the Poisson distribution assumption, i.e.
spatial randomness, did not hold for the abun-
dance of Eurytoma and psyllids. Values of ¢ were
smaller for the models under the negative bino-
mial distribution assumption than the Poisson (Ta-
bles 2, 3). Estimates of Eurytoma (Table 2) and
psyllid abundance (Table 3) parameters (A and )
differed among models. For example, the model
without covariates (Poissonl and NBD1), month
(Poisson3 and NBD3) or stand alone (Poisson4 and
NBD4) underestimated Eurytoma abundance
compared to the model with year alone or year
and month (Table 2).

The AIC. scores were larger in all models under
the Poisson than the negative binomial distribution
indicating that the negative binomial distribution
is better than the Poisson for Eurytoma (Table 2)
and psyllid (Table 3) abundance. Under the Poisson
assumption, the smallest AIC. score (-20393.9) was
obtained in the model containing year, month and
stand (Poisson8). This model also had the maximum
AICy value indicating that it has 100 % likelihood
of being the model that gives the best estimate of
Eurytoma abundance under the Poisson assump-
tion. Under the negative binomial distribution
assumption, the smallest AIC. (—22496.4) was
recorded in the model consisting of year and
month (NBD5), which had thelargest likelihood of
83 % (AICy = 0.83). This model also had wider
confidence interval for Eurytoma abundance and
the smaller estimate of k (0.698) among all the
models considered (Table 2). Among the single-
covariate Poisson and negative binomial distribu-
tion models, only year and month had significant

effect on the abundance of Eurytoma (Table 4).
When stand was considered along with month or
year, it had significant influence under the Poisson
assumption but not under the negative binomial
distribution (Table 4).

In the case of psyllids (Table 3), the smaller AIC.
(-19828) was found in the model with site
(Poisson2), which had 100 % likelihood (AIC,, =
1.0) of being the best Poisson model. On the other
hand, the negative binomial distribution model
without covariates (NBD1) had 62 % likelihood
compared to the model with site, which had 38 %
likelihood. The psyllid abundance estimates under
both Poisson and negative binomial distribution
assumptions were higher in the model with site
compared with the one with out covariate effect
(Table 3). However, likelihood ratio test showed no
significant effect of site on psyllid abundance.

Occupancy

Estimates of detection probability (p) differed
among the models of Eurytoma (Table 2) and
psyllid occupancy (Table 3). The largest p value for
Eurytoma occupancy was found in the model with
year and month (Logistic5), while detectability
was smallest in the model with month alone
(Logistic3). Logistic5 also had the smallest value of
¢ (1.5) and AIC. (648.6), while the largest values of
¢ (10.6) and AIC. (1012.7) were recorded in the
model without covariates effects (Table 2). The
model with year and month also had 89 % (AIC,,
= 0.89) more likelihood of being the best model
among those compared. When considered singly,
year, month and stand influenced detection prob-
ability significantly (Table 4). However, stand did
not significantly influence detection probability
when considered along with month or year.

In the case of the psyllids, the model without
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Table 4. Significance of covariates under Poisson, negative binomial and logistic model to abundance and occupancy

of Eurytoma in Sesbania.

Variable Distribution Model Covariates in model P (%)
Abundance Poisson Poisson2 Year <0.0001
Poisson3 Month <0.0001
Poisson4 Stand 0.4703
Poisson5 Year <0.0001
Month <0.0001
Poisson6 Year <0.0001
Stand <0.0001
Poisson7 Month <0.0001
Stand 0.0124
Poisson8 Year <0.0001
Month <0.0001
Stand <0.0001
NBD NBD2 Year <0.0001
NBD3 Month <0.0001
NBD4 Stand 0.8041
NBD5 Year <0.0001
Month <0.0001
NBD6 Year <0.0001
Stand 0.2538
NBD7 Month <0.0001
Stand 0.5570
NBD8 Year <0.0001
Month <0.0001
Stand 0.3148
Occupancy Logistic Logistic2 Year <0.0001
Logistic3 Month <0.0001
Logistic4 Stand 0.0004
Logistich Year <0.0001
Month <0.0001
Logistic6 Year <0.0001
Stand 0.8820
Logistic7 Month <0.0001
Stand 0.1110
Logistic8 Year <0.0001
Month <0.0001
Stand 0.8763

covariates (Logisticl) had a smaller ¢ (0.89), AIC.
(193.8) and 97 % likelihood of being a better model
than the one with site. Likelihood ratio tests also
showed that site does not have a significant
influence on detectability of psyllids.

Relation between occupancy and abundance
Figure 1 shows the observed occupancy of
Eurytoma and that predicted from abundance
assuming spatial randomness (Poisson), and the
worst (NBD1) and best (NBD5) negative binomial
distribution models. The Poisson and NBD1 over-
estimated occupancy especially at lower densities

relative to the observed (Fig. 1a). Under the Poisson
assumption, Eurytoma occupancy saturated faster
at higher densities (>6 wasps per pod), yielding
little information about abundance. On the other
hand, the negative binomial distribution model
with year and month (NBD5) predicted occupancy
much closer to the observed than Poisson. Satura-
tion was not observed under the negative bino-
mial distribution models even at the highest
density. The Poisson and NBDI1 also underesti-
mated abundance at lower Eurytoma occupancy
rates, while NBD5 predicted abundance much
closer to the observed abundance (Fig. 1b).
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Fig. 1. Observed and predicted occupancy versus observed abundance (a) and observed abundance and abun-
dance predicted from occupancy (b) of Eurytoma sp. (Hymenoptera: Eurytomidae) in Sesbania pods and observed
and predicted occupancy versus observed abundance (c) and observed abundance and abundance predicted from

occupancy (d) of psyllids on Leucaena shoots

The observed occupancy of the leucaena psyllid
and that predicted from its abundance assuming
Poisson and the negative binomial distribution
models are presented in Fig. 1c,d. The Poisson
overestimated occupancy, and the proportion of
infested shoots saturated faster when psyllid
densities are more than 5. The negative binomial
distribution models (NBD1 and NBD2) predicted
occupancy closer to the observed data compared
with the Poisson (Fig. 1c). The Poisson also under-

estimated abundance at all levels of occupancy
compared with the negative binomial distribution
models (Fig. 1d). The occupancy and abundance
of psyllids predicted by NBD1 and NBD2 only
differed slightly.

DISCUSSION

Using Eurytoma and leucaena psyllid count data,
this paper has demonstrated the application of (1)
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GLMs for modelling abundance and detection
probability, (2) information criteria for model
selection and (3) occupancy-abundance models
for precise estimation of insect abundance. GLMs
indicated that the assumption of spatial randomness
did not hold for both Eurytoma and psyllid data.
Model selection criteria (AIC: and AICy) (Table 2)
and likelihood ratio statistics (Table 4) also showed
that abundance and detectability of Eurytoma was
significantly influenced by year and month when
considered singly or in combination with other
covariates. This indicates that temporal, both
seasonal and annual, changes in Eurytoma popula-
tions induced heterogeneity that could not be
adequately accounted by the Poisson assumption
of spatial randomness.

Information criteria indicate that the negative
binomial distribution models provide better
descriptions of the abundance of both insects than
did the Poisson. The negative binomial distribution
has also been found to be better than the Poisson
for description of several other insects (Sileshi
2006). Among the negative binomial distribution
models, NBD5 had the highest likelihood of being
the best model and gave a better estimate of
Eurytoma abundance. This shows that covariate
information further improved the precision of
abundance estimates of Eurytoma. It also indicates
that Eurytoma abundance varied as a function of
year and month (Table 4) under the negative bino-
mial distribution assumptions. Although site did
not have a statistically significant effect on abun-
dance, Poisson2 and NBD2 appear to give a better
estimate of abundance of psyllids compared with
Poisson1 and NBD1, which underestimated abun-
dance.

Although the occupancy predicted by the nega-
tive binomial models was much closer to the
observed than that predicted by the Poisson
models (Fig. 1) the Poisson model generally over-
estimated occupancy and underestimated abun-
dance relative to the observed. Under the Poisson
assumption, occupancy of both insects studied
also saturated faster at higher densities, yielding
little information about their abundance (Fig. 1). It
has also been shown in other insects (Sileshi et al.
2006) that the uncertainty associated with the
prediction may be too large to ignore, as occupancy
rates approach 1. The fact that many other distri-
butions including the Poisson are related to the
negative binomial distribution (Johnson & Kotz
1969; Sileshi 2007) suggests that the spatial distri-

bution of both insects is likely to be approximated
by this distribution. Hence, the occupancy-
abundance models derived from the negative
binomial distribution should be considered as
more realistic approximations to the underlying
process that generated the observed data. How-
ever, the negative binomial distribution may give
an unreliable prediction if a constant k is used
(Taylor et al. 1979; Sileshi et al., 2006). As demon-
strated in Table 2 and Fig. 1, k values and hence the
predicted occupancies are greatly influenced by
covariate structure in the data. This highlights the
need for careful consideration of covariate effects
and selection of models using objective criteria
when constructing occupancy-abundance rela-
tionships.

In order to select an adequate model among
the range of models considered (Table 2 and 3),
information criteria are more appropriate than
traditional likelihood statistics (Johnson &
Omland 2004; Sileshi 2006). Once an appropriate
model has been identified using such criteria,
occupancy-abundance relationships can be estab-
lished. Then, future monitoring could entirely be
based on presence—absence sampling, and abun-
dance estimates for a given area (belonging to the
same statistical universe) may be obtained directly
from the proportion of occupied sampling units
observed in a random sample taken even from
areas where abundance surveys could not be
conducted.

This approach is particularly appealing in the
monitoring of insects in conservation projects
because it yields inferences about the status of a
population based only on the presence or absence
of individuals, data that can be relatively easily
collected. The method also has a potential applica-
tion for predicting large-scale population dynam-
ics of invasive alien insects because it allows
factors affecting fine-scale population dynamics,
e.g. the effects of habitat quality, to be linked with
the factors determining regional abundance and
hence to be able to predict the total size of a
regional population (Freckleton et al. 2005).
Counting individual insects such as psyllids is not
only time consuming and expensive but it can also
be extremely difficult to obtain an unbiased estimate.
Occupancy-abundance models have been shown
to be cost effective (Joseph et al. 2006).

Occupancy-abundance models (He & Gaston
2003; Sileshi et al. 2006) have often been described
assuming that abundance is observable without
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error. On the other hand, approaches for estimat-
ing occupancy (e.g. MacKenzie et al. 2002; 2003)
have been described without considering occu-
pancy-abundance relationships. Only very few
published studies (e.g. Royle et al. 2005) exist using
the method described here. Therefore, further re-
search is needed in this field to develop models
that provide better estimates.
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Appendix 1. SAS procedures used for fitting models of Eurytoma abundance.

Data Eurytoma;
Input Year Month $ Stand $ Count;
If Count>0 then detect=1;

else detect=0;/*Converts counts into 1(=detection) or 0O(=non-detection)*/

Cards;

1998 July Fallow 6
1998 July Isolat 20
1999 July Fallow 4
1999 July Isolat 6
1998 Aug Fallow 6
1998 Aug Isolat 0
1999 Aug Fallow 0
1999 Aug Isolat 0
1998 Dec Fallow 10
1998 Dec Isolat 0
1999 Dec Fallow 0
1999 Dec Isolat 4

;
Titlel ‘Poisson' regression model for Eurytoma abundance’;

Proc genmod Data=Eurytoma;
Class Year Month Stand;

model Count=/dist=poisson link=1log type3;/*Poissoni*/

Run;
Proc genmod Data = Eurytoma;
Class Year Month Stand;

model Count=Year/dist=poisson link=log type3;/*Poisson2*/

Run;
Proc genmod Data = Eurytoma;
Class Year Month Stand;

For the NBD model, replace dist = Poisson with dist=nb in the model statement of all of the above.
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model Count=Month/dist=poisson link=1log type3;/*Poisson3*/

Run;

Proc genmod Data

Eurytoma;

Class Year Month Stand;
model Count=Stand/dist=poisson link=1log type3;/*Poisson4*/

Run;

Proc genmod Data

Eurytoma;

Class Year Month Stand;
model Count=Year Month/dist=poisson link=1log type3;/* Poisson5*/

Proc genmod Data

Eurytoma;

Class Year Month Stand;
model Count=Year Stand/dist=poisson link=log type3;/*Poisson6*/

Run;

Proc genmod Data

Eurytoma;

Class Year Month Stand;
model Count=Month Stand/dist=poisson link=1log type3;/*Poisson7*/

Run;

Proc genmod Data

Eurytoma;

Class Year Month Stand;
model Count=Year Month Stand/dist=poisson link=log type3;/*Poisson8*/

Run;

Appendix 2. SAS procedures used for fitting various models of Eurytoma detection probability.

Title2 ‘Logistic regression model for Eurytoma detection probability’;
Proc logistic Data=Eurytoma;

Class Year Month Stand;

model detect=/waldrl aggregate;/*Logistic1*/

Run;

Proc logistic Data

= Eurytoma;

Class Year Month Stand;
model detect=Year/waldrl aggregate;/*Logistic2*/

Run;

Proc logistic Data

= Eurytoma;

Class Year Month Stand;
model detect=Month/waldrl aggregate;/*Logistic3*/

Run;

Proc logistic Data

= Eurytoma;

Class Year Month Stand;
model detect=Stand/waldrl aggregate;/*Logistic4*/

Run;

Proc logistic Data

= Eurytoma;

Class Year Month Stand;
model detect=Year Month/ waldrl aggregate;/*Logistic5*/

Proc logistic Data

= Eurytoma;

Class Year Month Stand;
model detect=Year Stand/waldrl aggregate;/*Logistic6*/

Run;

Proc logistic Data

= Eurytoma;

Class Year Month Stand;
model detect=Month Stand/waldrl aggregate;/*Logistic7*/

Run;

Proc logistic Data

= Eurytoma;

Class Year Month Stand;
model detect=Year Month Stand/waldrl aggregate;/*Logistic8%*/

Run;
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