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Abstract
‘One health’ (OH) is a cross-sectoral approach that addresses human, plant, animal, and environmental health problems. The 
initiative stems from recognition of the convoluted linkages among global health risks and the need for coherent multipronged 
countermeasures. For agriculture, environmental degradation and biodiversity depletion wrought by heavy reliance on inor-
ganic inputs to meet the needs of the ever-growing human population, are a matter of societal concern. Agroecological-based 
farming strategies have therefore aptly been promoted as an alternative. The push-pull technology (PPT), which was origi-
nally developed to combat stemborer pests and later the parasitic weed Striga is one such example. Undoubtedly, the PPT`s 
ability to maintain soil health and fertility, human and animal nutrition, and food safety together with crop protection against 
pests remains a progressive approach for buttressing food production among resource-constrained farmers in sub-Saharan 
Africa (SSA). In a bid to elevate its nutrition-sensitivity status, we recently intensified the cereal PPT by adding vegetables 
and legumes whilst simultaneously closing yield gaps through judicious usage of land, and environmental and crop protec-
tion based on farmer needs. Such context-based interventions, unlock new benefits for farmers and open new frontiers for 
research in pest and biodiversity management emanating from crop production infused with food safety and environmental 
stewardship. Whilst OH has largely received attention regarding animal health and zoonotics, we here opine how sustainably 
managed crop health, in the vegetable intensified PPT, contributes to the same outcomes through human and animal nutri-
tion, food safety that bolsters developmental goals in gender equity and food security. We conclude that the cropping system 
can even contribute to fight against zoonotic diseases if companion plants that fend off diseases vectors are incorporated.

Keywords Agrobiodiversity · Ecosystem services · Context-based interventions · Crop-livestock systems · Nutrition-
sensitive agriculture

Introduction

Insect pests and low soil fertility are major constraints in 
crop production for smallholder farmers of sub-Saharan 
Africa (SSA). For many of them, inorganic fertilisers and 
pesticides are costly and can cause devastating non-target 
effects that compromise both human health and environ-
mental integrity (Machekano et al. 2019). Environmental 

degradation due to overgrazing and perpetual land-use 
change in response to the increasing human population is 
another challenge. One health (OH) approach to sustain-
able agricultural and food production is required to mitigate 
these public and environmental health problems associated 
with intensive conventional farming. Central to the OH 
approach is the recognition of the interconnectedness of 
human, animal, and environmental health problems and the 
desired unified responses that sustainably balance various 
health outcomes. Agroecology has long been regarded as 
an optimal response to conventional agriculture and recent 
calls advocate for sustainable intensification of such sys-
tems to meet various needs including nutrition, pest man-
agement, moisture, and biodiversity conservation (Campbell 
et al. 2014; Caron et al. 2014; Struik et al. 2014; Struik and 
Kuyper 2017).
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The agroecologically based cereal push-pull technol-
ogy (PPT) is a companion cropping system where maize 
or sorghum is intercropped with leguminous plants of the 
genus Desmodium [Fabaceae] whilst surrounded by Napier 
grass (Pennisetum purpureum) or those of the Brachiaria 
sp [all Poaceae] (Midega and Khan 2003). The Desmodium 
intercrops protect cereal crops by repelling (push factor) 
stemborer pests including the emerging Spodoptera fru-
giperda (fall armyworm), whilst recruiting parasitoids that 
further parasitise the pests (Khan et al. 1997; Sobhy et al. 
2022). The peripheral grasses attract (pull factor) these 
pests away from the crop for oviposition without allowing 
full larval development thereby acting as ecological traps. 
This creates a dramatic net decrease in pest populations in 
the field and minimal crop damage thereby boosting yields 
(Midega et al. 2018).

In addition to poor soil fertility, the parasitic weed of the 
genus Striga is very prevalent in cereal production in areas 
of SSA. The Striga weeds compromise crop health by attach-
ing their roots to those of the cereal crops, poaching both 
nutrients and water meant for crop growth, consequently 
reducing yield. In severe cases, Striga infestations lead to the 
abandonment of otherwise suitable farming land (Mudereri 
et  al. 2019). Nevertheless, the leguminous Desmodium 
addresses these constraints making it not only a pest man-
agement tool but a pivotal component of building soil health. 
Therein, the novel isoflavanones of Desmodium root exu-
dates induce Striga seed germination while others inhibit 
its radicle growth (Tsanuo et al. 2003; Hooper et al. 2015), 
causing suicidal germination and subsequent depletion of 
its soil seedbanks overtime (Khan et al. 2008a, b). Other 
soil health components contributed by Desmodium include 
biological nitrogen fixation, improved organic matter and 
phosphorus content, moisture conservation and increased 
microbial activity (Drinkwater et al. 2021). In addition, both 
groups of perennial companion plants used in the PPT serve 
as important fodder for livestock production where they are 
periodically harvested for on-farm consumption and sale 
with significant economic benefits (Chepchirchir et al. 2018; 
Kassie et al. 2018).

Despite the numerous benefits and successes of the PPT, 
one of the major challenges facing smallholder farmers in 
SSA is limited land, a finite resource consistently under 
pressure. Any further land-use change for expansion of crop 
cultivation will lead to further degradation of landscapes, 
defeating efforts towards much-needed biodiversity conser-
vation that enable ecosystem services for agricultural pro-
ductivity and human well-being. Nutritional diversity is also 
a lagging factor in cereal-dominated food systems of many 
subsistence farmers in SSA (de Graaf et al. 2011; Noort 
et al. 2022). Hence sustainable intensification (SI), which 
theoretically increases agricultural productivity without 
further degrading the environment and ecosystem services 

(Rudel 2020), has been widely touted as a viable alternative 
for subsistence farmers (Campbell et al. 2014; Struik et al. 
2014; Droppelmann et al. 2017).

Whilst the PPT represents a form of SI integrating the 
crop-livestock system followed by the realisation of ecosys-
tem services such as on-farm biodiversity conservation, pest 
management, livestock fodder ameliorating land degradation 
due to overgrazing, the omission of high-value nutrient-rich 
companion plants was perhaps a disincentive for some farm-
ers with ample grazing land or without livestock. For the 
latter, opportunities for establishing lucrative trade of fodder 
have been reported in East Africa (Chepchirchir et al. 2018; 
Kassie et al. 2018). However, this may likely be more profit-
able where grazing land or fodder is limited. Hence for many 
farmers, integrating the PPT with high-value crops such as 
vegetables remains a major incentive for both nutritional 
diversity and improved incomes. The practice of intercrop-
ping cereals with other crops such as beans and pumpkins 
is not new to subsistence farming in SSA. However, there 
have been no cases where intercropping was done for har-
nessing both nutritional diversity, biodiversity conservation, 
and ecosystem services provision such as pest management 
and cultivation of fodder. Using past experiences and current 
evidence, we discuss the prospects of integrating vegeta-
bles and legumes within the cereal PPT (Fig. 1) on meeting 
OH needs. We also highlight the biophysical considerations 
fostering biodiversity conservation and ecosystem services, 
with new frontiers for research and socioeconomic aspects 
that mediate technology adoption.

Push‑pull as an effective approach for land sparing 
and sharing, and biodiversity conservation

Heavy input-reliant agricultural intensification is generally 
associated with decreased biodiversity. This understand-
ing is contentious where proponents argue that intensifica-
tion increases productivity per unit area of land resulting 
in residual land spared to conserve biodiversity-rich spaces 
(land sparing). Conversely, non-intensive approaches have 
been associated with extensive land usage to achieve similar 
levels of productivity thereby leaving fewer spaces for biodi-
versity conservation (land sharing) (Desquilbet et al. 2017). 
Whilst presenting a dichotomy, what is clear is that the land 
sparing-sharing model stems from a common goal to mini-
mise harm to biodiversity in agricultural landscapes and the 
opportunity costs therein (Phalan et al. 2011; Phalan 2018). 
Interestingly, such biodiversity and functionality thereof or 
its connectivity is rarely characterised or quantified, with 
all understanding currently based on land parcels left for 
biodiversity conservation. For SI and various agroecologi-
cal approaches, emphasis is placed on the increased yield 
on existing farmland whilst fostering practices that main-
tain biodiversity and environmental integrity to promote 
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ecosystem services (Tilman et al. 2011; Wezel et al. 2014, 
2020). Hence SI, to a larger degree, is very much an exten-
sion of the land-sparing approach through higher yields, 
only without adverse impacts on the environment.

The PPT is a component of the SI paradigm, which inter-
estingly has both provisions for land sparing and sharing. 
For example, integrating cereals with important fodder 
crops that suppress pest damage ensures sparing of land as 
overgrazing is avoided through in situ production of fodder. 
Indeed, these companion plants are an important compo-
nent of mixed crop-livestock systems where they have been 
credited for increased milk productivity (Kassie et al. 2018). 
Through understanding the intricate chemistry of these com-
panion plants, the cropping system is manipulated such that 
the increased on-farm biodiversity also recruits various natu-
ral enemies that increase predation and parasitism of crop 
pests (Cook et al. 2007). Thus, to some degree, support-
ing land-sharing as targeted biodiversity is increased and 
maintained. Further intensification of the cereal PPT with 
vegetable integration provides an opportunity for strengthen-
ing the provisions for both land-sparing and sharing. Indeed, 
one of the initial setbacks of the cereal PPT was its failure to 
account for nutritional diversity and crop rotations. Hence, 
vegetable integration will not only ensure effective land uti-
lisation and reserve patches for biodiversity conservation 
but also the realisation of various key ecosystem services.

Functional biodiversity, multitrophic interactions, 
and harnessing ecosystem services

Enriched biodiversity and the subsequent ecosystem services 
remain a pivotal component of ensuring high crop produc-
tivity and resilience in SI systems. For the cereal PPT, the 
model meets a set of needs for ecosystem services below and 
aboveground. Aboveground, the onslaught of a complex of 

stemborer pests that heavily constrain cereal production in 
SSA was suppressed through the pest repellent properties of 
Desmodium intercropped companion plants and enhanced 
pest parasitism through their parasitoid recruitment (Khan 
et  al. 1997; Midega and Khan 2003). Additionally, the 
peripheral grasses of the PPT lure pests away from the crops 
due to superior attractive appeal of their volatilome (Birkett 
et al. 2006). These grasses subsequently act as ecological 
traps by arresting larval development thereby dramatically 
reducing crop damage and pesticide usage. Reduced use of 
pesticides, conserves beneficial insects, including pollina-
tors, thus increasing productivity of pollination-dependent 
crops.

More recently, this PPT has proved effective against the 
recent invasive fall armyworm (Midega et al. 2018; Harrison 
et al. 2019) largely owing to the repellent properties of the 
Desmodium intercrop (Scheidegger et al. 2021; Sobhy et al. 
2022). Below the ground, Desmodium has been critical in 
maintaining soil health through suppression of the parasitic 
weed Striga together with fixing the much-needed nitrogen. 
Additionally, the maize-desmodium intercropping within 
the PPT leads to the accumulation of soil organic matter 
and available phosphorous for the crops (Drinkwater et al. 
2021; Ndayisaba et al. 2021). Furthermore, plant-soil feed-
backs with the PPT have been shown to increase chemical 
plant defences against pests (Mutyambai et al. 2019). Such 
ecosystem services have not only boosted crop productivity 
but also reduced reliance on inorganic inputs, resources that 
are largely unaffordable for resource-poor farmers of SSA.

The introduction of vegetables within the cereal PPT 
undoubtedly presents new challenges and opportunities in 
plot design and manipulation of trophic interactions. For 
example, most key vegetables for SSA smallholder farmers 
succumb to a diverse range of pests of various taxa. This, 
therefore, calls for new lines of research on the chemical 

Fig. 1  Schematic diagram of the 
vegetable integrated push-pull 
technology (VIPPT) and the 
pest management and soil health 
ecosystem services therein
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ecology and trophic interactions therein. Thus, integrative 
field and laboratory studies elucidating the trophic interac-
tions within the vegetable integrated PPT (VIPPT) are cur-
rently under way. Preliminary results have shown that pest 
infestation was lower in Brassica intercropped with Desmo-
dium with subsequent increase in yield attributed to both 
increased nitrogen availability and reduced damage. This 
was consistently corroborated by further on-station trials 
integrating various vegetables within the cereal PPT where 
pest damage was consistently low leading to improved yield.

Prospects for building resilience under different 
agroecological regions

On-farm practices can determine the impact of climate 
shocks (Aryal et al. 2021). For subsistence farmers of SSA, 
high temperatures and erratic rainfall leading to sustained 
dry spells are major abiotic constraints for crop production 
in rainfed systems. Hence, crop and/ or varietal selection 
forms the first critical step towards local climate adapta-
tion and livelihood resilience at various spatial and temporal 
scales (Zinyengere et al. 2014). These adaptive benefits can 
be enhanced by intercropping with resilient crops, a critical 
component of ‘climate-smart agriculture’ enabling in situ 
efficient resource utilisation and buffering against climate 
stressors (Nyawade et al. 2019). For example, intercropping 
improves moisture conservation through the reduction of 
elevated surface temperature, evapotranspiration, and run-
off. The latter does not only improve water infiltration but 
also supports soil conservation, especially in highland areas 
where soil erosion can be rampant. Despite all these ben-
efits, attention should be focused on the complementarity 
to ensure favourable microclimates for the mixed crops and 
efficient usage of light per unit area for optimal agronomic 
performance. For example, intercropping improved crop 
water productivity in rainfed potato following intercropping 
with legumes owing to soil temperature optimisation and 
radiation use efficiency (Nyawade et al. 2019).

For the PPT, several climate change mitigating strategies 
have previously been reported including the development 
of the ‘climate-smart PPT’, which employs more drought 
and heat tolerant companion plants compared to the conven-
tional one (Midega et al. 2018). These seminal innovations 
were eventually followed by the third generation PPT, which 
not only tackles climate stressors but also biotic constraints 
inflicting the companion plants, particularly mites occur-
ring on Brachiaria cv. Mulato (Cheruiyot et al. 2021a, b). 
These three variants of the PPT provide important options 
matching different agroecological zones and farmers` needs. 
More importantly, integrating with locally adapted vegeta-
bles and legumes creates even more climate resilient options 
for farmers under different agroecological zones. Further-
more, the addition of vegetables within the PPT can cushion 

farmers against climate shocks and total crop failure. This is 
particularly important in cases where early and late matur-
ing crops are intercropped together such that early maturity 
enables crops to escape transient adverse abiotic conditions 
within a season. Moreover, vegetables and legumes offer 
nutrient-rich diets that are often lacking in cereal-dominated 
food systems.

From the foregoing, selection of VIPPT crops has there-
fore been based on farmer preferences where climatic com-
patibility and prime market value were central to decision 
making. Hence, farmers in drought-prone areas opted for the 
more resilient sorghum and millet in place of maize whilst 
integrating with largely robust indigenous vegetables such 
as African nightshade (Solanum scabrum). In all cases, 
complementarity among the intercrops is of paramount 
importance to minimise trade-offs including over-shading, 
competition, and weediness.

Alignment with the one health initiative

One Health approach recognises the interconnectedness 
of human, animal, and environmental health and the need 
for judicious stewardship of all health paradigms to ensure 
human wellbeing (FAO et al. 2020). In this era of global 
pandemics (including those of zoonotic origin), climate 
change, and invasive alien species, all attributed to vari-
ous deleterious impacts of anthropogenic activities on the 
environment and/ or biodiversity, environmentally benign 
farming methods have been brought to the spotlight as coun-
termeasures to mitigate some of these challenges. Although 
the original OH framework was anthropocentric with much 
focus on zoonotic pathogens and non-crop plant life (Van 
Bruggen et al. 2018), recent reports have linked the impor-
tance of integrating plant health to the OH concept (Falken-
berg et al. 2022; Hoffmann et al. 2022), where pest manage-
ment and environmental health takes center stage (Ratnadass 
and Deguine 2021).

For the VIPPT, a crop-livestock farming system designed 
largely for managing crop pests, several attributes conform 
to the OH concept (Fig. 2). Owing to its biologically inten-
sive ways of controlling pests, the reduction of farmer reli-
ance on synthetic pesticides is one obvious benefit of the 
PPT addressing food safety (human health), socioeconomic 
and environmental concerns for smallholder farmers. The 
adverse impacts of synthetic pesticides on the environment 
and human health are well documented (Macharia 2015; 
Machekano et al. 2019; Diallo et al. 2020). More recently, 
Ratnadass and Deguine (2021) reviewed the link between 
pesticide usage and viral zoonotic risks with agroecologi-
cal pest management strategies as alternative mitigative 
measures. Pesticide usage against disease vectors in pub-
lic health has been associated with development of resist-
ance by crop pests facing agriculture pesticides of similar 
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chemical groups (Venter 2018; Liu 2019; Ratnadass and 
Deguine 2021). Although in another case pyrethroid appli-
cation against rice weevil (Lissorhoptrus oryzophilus) led 
to a reduction in mosquito population (Lawler et al. 2007), 
it is apparent that pesticide usage in agriculture can have 
direct links with the occurrence of vectors of zoonotic dis-
eases warranting more attention. In addition, high rates of 
disturbances associated with conventional agriculture often 
lead to proliferation of invasive alien plants, some with 
devastating effects on both human and animal health. For 
example, the neotropical herbaceous invasive alien plant 
Parthenium hysterophorus typically invades degraded farm-
ing lands (McConnachie et al. 2011; Chidawanyika et al. 
2017; Strathie et al. 2021), leading to a reduction in crop 
yields including maize (Safdar et al. 2015). The weed is 
toxic for animals and taints meat and milk products, and also 
further compromises human health by inducing allergies. 
In addition, recent reports have linked the parthenium weed 
with replenishing energy reserves and boosting the survival 
of malaria vector Anopheles gambiae with potential for 
worsening malaria cases (Nyasembe et al. 2015). Through 
minimal tillage and reduction of overgrazing through fodder 

provision, the VIPPT helps in limiting on-farm infestations 
of parthenium where area-wide adoption may conserve Afri-
can grasslands and ultimately negating the contribution of 
parthenium on malaria incidences.

For SSA, vegetable production constitutes one of the 
major consumers of synthetic pesticides due to significant 
pest pressure, native or invasive (Ngowi et al. 2007; Macha-
ria 2015; Machekano et al. 2019). Through the integration 
of vegetables within the PPT, farmer usage of pesticides 
is further reduced thereby mitigating risks associated with 
vector populations and toxicity due to direct consumption. 
Furthermore, vegetable cultivation within PPT may help add 
much-needed micronutrients to the diets and food systems 
of SSA. Dubbed the ‘hidden hunger’, dietary micronutri-
ent deficiencies are indeed a global problem where both 
poor food choices and unavailability of healthy foods can 
exacerbate the problem (Ibeanu et al. 2020; Ruel-Bergeron 
et al. 2015). In addition, the mixed crop-livestock approach 
of the PPT has already proven invaluable by improving 
milk (another rich source of micronutrients) productivity 
through fodder provision. Hence, the VIPPT together with 

Fig. 2  Provisions of the sustain-
able vegetable integrated push-
pull technology (VIPPT) in 
alignment with the One Health 
approach



30 Environmental Sustainability (2023) 6:25–34

1 3

milk provision may help in averting the ‘hidden hunger’ in 
diets that are currently dominated by cereals.

Economic incentives and importance 
in the technology adoption

The adoption rate of agricultural technologies with higher 
crop productivity is relatively low in SSA (Shikuku and 
Melesse 2020). Several organizations have however made 
tremendous efforts in promoting the uptake of improved 
agricultural technologies. The International Centre for Insect 
Physiology and Ecology (ICIPE) has used several pathways 
to disseminate and encourage the adoption of PPT to help 
improve the production and yields of cereal crops and fodder 
(Khan et al. 2008a, b). Whilst adoption may be relatively 
high in Western Kenya, there is still a need for scaling up 
the technology to various regions.

Like many other technologies, it has become apparently 
clear that farmers adopt agricultural technology when they 
derive maximum benefits subject to existing constraints 
(Khonje et al. 2015). An increase in cereal yields is expected 
to boost food production where surplus can be sold to 
generate income (Kassie et al. 2018; Midega et al. 2010; 
Ndayisaba et al. 2020; Ogot et al. 2018). The economic 
contribution of conventional PPT is well documented. For 
instance, evaluating the farm- and market impacts of PPT 
in western Kenya, Kassie et al. (2018) reported that PPT 
adoption increased maize yield by 62%. Although the cost 
of production increased by 15% due to additional labour 
requirements, this was surpassed by net maize income, 
which increased by 39%. A recent study by Gugissa et al. 
(2022) in Ethiopia, similarly found that PPT reduced maize 
yield loss due to devastating FAW by 10–17%, and generally 
increased maize yield by 12–15%. The introduction of veg-
etable into PPT now provide farmers with additional synergy 
on farmer’s income as well as food and nutrition security. 
Vegetables mature faster and can be grown both during on 
and off cereal season thus providing continuous income and 
food for household use and surplus for the market. This fur-
ther allows for crop rotations, particularly during maize off-
seasons. Vegetables are also known to be highly marketable 
with a higher benefit-cost ratio than cereal crops (Rai et al. 
2019). Moreover, vegetable farming does not only employ 
farm owners but also the surrounding community members 
through wages for their labour on the farm (Yessoufou et al. 
2018). Vegetables further provide employment opportuni-
ties to various market value chain actors including youth 
and women who are over-represented in such fresh produce 
value chains.

The farmers’ choice to adopt agricultural technolo-
gies can also be determined by accessibility to inputs. For 
instance, the PPT has been perceived by farmers to be labour 
intensive during the initial establishment but the need for 

such labour diminishes over time once the perennial com-
panion plants are established (Khan et al. 2008b; Murage 
et al. 2015). Indeed, farmers have reported reduced weed-
ing requirements, land preparation, and irrigation as a result 
of adopting PPT (Murage et al. 2015; Diiro et al. 2018). 
The reduced labour demands translate to lower production 
costs and thus higher profits. Besides, PPT provides high-
quality forage reducing the time spent looking for fodder for 
livestock. The availability of forage through PPT adoption 
has also led to other co-benefits such as increased livestock 
ownership, and milk production for both domestic use and 
surplus for the market, which further improves household 
income (Muriithi et al. 2018). The VIPPT will therefore 
enhance the benefits of the technology through increased 
food and income for the target farming communities.

Vegetable value chain, policy development, 
and scaling‑up opportunities

The sustainably intensified VIPPT involves the integration 
of both high-value commercial and indigenous vegetables. 
Vegetables are a nutrient-rich food that contribute to food 
and nutrition security and thus enhanced health, but also an 
important source of household income. Particularly for SSA 
women who are often resource-constrained to invest in cap-
ital-intensive enterprises (Deissler et al. 2021). Inadequate 
information, poor technology dissemination, and limited 
extension services have resulted in the underdevelopment 
of the vegetable value chains. In particular, these challenges 
have resulted in lower adoption of indigenous vegetables and 
limiting market supply apart from seasonal scarcity. Indeed, 
consumption and utilization of indigenous vegetables is low 
during the off-season but increases on-season partly due to 
low prices as a result of surplus on the market (Laibuni et al. 
2018). Given the variability of such produce based on geo-
graphic location and climate, value chain development and 
governance should ensure elaborate distribution networks 
and quality assurance (Alulu et al. 2020). Social capital and 
networks incorporated into the intensification of the PPT 
system will thus be also key to improve indigenous vegeta-
ble value chain development, where value chain actors will 
play a role in knowledge development and sharing (Kassie 
et al. 2018).

Production and market access for high-value crops among 
smallholder farmers is often undermined by the complexity 
of the value chains in the ensuing agribusinesses (Humphrey 
2006). Policies aimed at supporting such farmers are there-
fore not only necessary to promote access to resources and 
information necessary for increased vegetable productivity 
and utilization, but also to enhance their income. Exten-
sion services currently focus more on agronomic aspects of 
production but play a (Fadeyi et al. 2022) limited support 
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regarding the trading of produce. Innovative and enhanced 
extension services should therefore boost both production 
and marketing to improve the farmers` income. Such exten-
sion services can be supported with enabling policy that 
fosters vibrant national research programs, investigating 
the production and market dynamics in smallholder value 
chains (Magogo et al. 2020). As the demand for vegetables 
continues to grow, partly due to increasing health awareness 
and the associated lifestyle changes (FAO 2017; Ndyetabula 
2022), a strong vegetable value chain linked to the VIPPT 
will not only contribute towards income, but also support 
human health through improved nutrition.

Gender disparities and empowerment

The PPT has been dominated by smallholder farmers (par-
ticularly women) whose cereal production is hampered by 
reduced land, limited resources, harsh climatic change, and 
weak policies (Murage et al. 2015; Ouya et al. 2020). The 
need of integrating women’s empowerment into nutrition-
sensitive agricultural programs such as VIPPT is evident 
(Diiro et al. 2018; Kassie et al. 2020). Earlier studies on con-
ventional PPT reported several benefits including improved 
dietary diversity score following women`s technology adop-
tion and empowerment.

According to Manda and Mwakubo (2014), gender ine-
qualities on major productive agricultural assets like land are 
more pronounced in SSA, particularly due to cultural norms. 
Male farmers often dominate high-value crops while women 
are in less lucrative value chains. Furthermore, women farm-
ers tend to have limited access to market information, exten-
sion services, credit, and technologies compared to men. 
These gender inequalities are often associated with low agri-
cultural productivity of female-managed farms (Quisumbing 
and Pandolfelli 2010). Addressing the gender inequality in 
agricultural systems can therefore, transform livelihoods for 
rural communities, enhance economic growth and reduce 
poverty in developing countries (Kristjanson et al. 2014).

Gender equity and women empowerment are inextrica-
bly linked, and both play a key role in enhancing the adop-
tion of agricultural technologies in SSA (Alkire et al. 2013; 
Seymour 2017). The gender nuances regarding technology 
adoption and its impact may thus also influence VIPPT 
adoption and subsequent achievement of OH goals. Hence, 
gender mainstreaming of the VIPPT during dissemination 
of the technology will be vital. Moreover, women comprise 
most of the vegetable value-chain actors in SSA. Therefore, 
targeted involvement of women within the VIPPT and sub-
sequent value-chains will improve technology adoption.

Conclusion

Context-based interventions are key to addressing food 
and nutritional insecurity of resource-poor farmers in SSA. 
Through incorporation of farmer needs in nutritional, mar-
ket, climatic compatibility, and several indirect ones, the 
VIPPT is a boost for smallholder farmers in this region. 
Whilst the cropping system helps in crop protection, soil 
health, food safety, human and animal nutrition, there is 
room for improvement. At farm level, focus should now also 
be placed on fodder plants that not only fend off crop pests 
but also animal disease vectors. This includes tick-proofing, 
which may be achieved by repellent plants directly even after 
ingestion where livestock that consume repellent plants are 
less preferred. These additional benefits may help alleviate 
the burden of livestock diseases and improve the sustain-
ability of the mixed farming system. Such locally devel-
oped solutions, together with farmers, are urgently needed 
for increased behavioural change and adaptation to address 
regionally specific problems towards environmental sustain-
ability and OH in African agriculture.
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