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Abstract
Achieving food security remains a pressing challenge for small-scale farmers, especially in sub-Saharan Africa and Latin 
America. Ongoing climate change, invasive noxious weeds, and crop pests further exacerbate the situation. Optimizing tradi-
tional cropping systems for sustainable yields and climate-resilient production is imperative in order to address this challenge. 
The pre-Columbian milpa system of intercropping maize with companion crops such as beans (Phaseolus vulgaris) and 
squash (Cucurbita spp.) is one effective system that has been shown to produce outstanding yields per unit area compared to 
monoculture systems. The Push-Pull Technology developed in East Africa, based on the use of repellent and trap companion 
plants intercropped with maize (and to a lesser extent sorghum), is seen to be similarly effective in minimizing the impact of 
major pests on yields, including striga weed (Striga spp.), maize stemborers, and the fall armyworm (Spodoptera frugiperda). 
Although both systems have the potential to compensate for each other’s limitations, there has been no cross-system learning 
between the Mesoamerican milpa and the East African Push-Pull Technology. Here, we review both systems and present 
the advantages likely to be obtained by combining these technologies in small-scale farming. The proposed milpa push-pull 
system could adapt to different gradients of altitude, rainfall, and soil nutrient levels, in addition to controlling pests, and 
therefore has the potential to become a fundamental cropping technique in Latin America and sub-Saharan Africa.

Keywords  Desmodium · Brachiaria · Napier grass · Fall armyworm · Striga weed · Stimulo-deterrent · Diversionary 
strategy · Stemborer · Maize · Squash · Beans

1 � Introduction: Maize, Mesoamerican Milpa, 
and the Push‑Pull Technology

Food insecurity remains a pressing issue for many small-
scale farmers, especially in sub-Saharan Africa and Latin 
America (Silvestri et al. 2015; Espinosa‐Cristia et al. 2019). 
Varying rainfall patterns under climate change, in addition 
to threats such as invasive noxious weeds and crop pests, 
further deepen the problem (Khan et al. 2014; Gazal et al. 
2018). Therefore, optimizing agricultural techniques for the 
production of staple foods, such as maize (Zea mays ssp. 
mays), becomes imperative.

Maize origins trace back nearly 9000 years to the Mes-
oamerican region when it was domesticated from its wild 
relative teosinte by early settlers (Matsuoka et al. 2002). It 
became the staple food source for many indigenous Ameri-
can societies (Staller 2021) and a crucial component of 
the diets of subsistence farmers across the Americas and 
Africa (Shiferaw et al. 2011). In fact, maize accounts for 
more than 20% of the calorie intake in Eastern Africa, 
Central America, and Mexico (Shiferaw et al. 2011). At 
the same time, these regions are also likely to suffer dis-
proportionately from the impacts of climate change on 
agricultural production through increases in droughts 
and the pressure of native or invasive pests (McGuigan 
et al. 2002; Mainka and Howard 2010). The mean global 
maize losses due to pests and pathogens stand at 22.5% 
but increase to 30.1% in sub-Saharan Africa (Savary et al. 
2019). The predicted range expansion, severity, and emer-
gence of pests and pathogens with ongoing climate change 
further threaten long-term food security (Bebber 2015; 
Ristaino et al. 2021).
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Agricultural intensification and land-use change have 
increased the pressure that pests and pathogens exert 
on crops, especially in non-origin areas, where natural 
enemies are usually absent (Bianchi et al. 2006; Chap-
lin-Kramer et al. 2011). For example, the invasion of the 
fall armyworm (Spodoptera frugiperda, FAW) in Africa 
in 2016 was dramatic as this pest attacks common cereal 
crops, including maize and sorghum (Davis et al. 2018; 
Baudron et al. 2019); whereas in the Americas, the species 
is a generalist pest of almost all main staple crops (Mon-
tezano et al. 2018). Climate change and FAW have been 
the main threats to food security in sub-Saharan Africa in 
recent years (Gebreziher 2020; Matova et al. 2020; Tim-
ilsena et al. 2022).

Several strategies have been developed across the trop-
ics to deal with the susceptibility of maize to soil fertility, 
climatic stressors, and pest pressures (Altieri and Nicholls 
2003; De Groote et al. 2010). One such strategy involves 
enriching the system with edible and/or beneficial compan-
ion plants. The traditional milpa system in Mesoamerica, 
based on intercropping maize with beans and squash, and the 
Push-Pull Technology (PPT) developed in Eastern Africa in 
1997, are key among available technologies based on com-
panion cropping strategies. Both technologies have shown 
great promise, most conspicuously through strong increases 
in yield, but also through a range of other benefits (Khan 
et al. 2014; Lopez-Ridaura et al. 2021). While the milpa 
system is founded on diversified food crop production, the 
push-pull system makes use of attractive and repellent prop-
erties of companion plants to reduce the pressure of pests on 
the crop. However, to date, milpa use has remained mostly 
limited to smallholder indigenous farmers in Mexico and 
Central America (Molina-Anzures et al. 2016), although 
there are reports of cereal-legume (Layek et al. 2018; Maitra 
et al. 2020) and cereal-legume-pumpkin (Baudron et al. 
2019) combinations from other parts of the world, includ-
ing Asia and Africa.

Widespread adoption of the PPT, on the other hand, has 
been limited by several factors including access to seeds 
of companion plants, lack of flexibility for crop rotation/
diversification, and the amount of labor required at the ini-
tial stages (Fischler 2010). While very efficient in control-
ling pest and weed infestations, one main constraint of PPT 
lies in the fact that the recommended companion plants are 
not utilized as food, making the system produce only maize 
and fodder from plots that would otherwise be intercropped 
with other food plants such as common beans in addition 
to maize. Meanwhile, the milpa system is not designed to 
withstand high levels of insect pests and/or striga weed 
infestation. Surprisingly, to date, there has been little or no 
cross-system learning between the Mesoamerican milpa and 
the East African PPT, despite the fact that both systems have 
the potential to compensate for each other’s limitations.

Here, we review the available literature on the charac-
teristics of milpa and the PPT. We followed a qualitative 
review methodology that was not designed to be exhaustive, 
but rather to represent a consistent sample of the literature. 
Articles that described both systems, as well as those with 
evidence to support the potential benefits of combining 
milpa and PPT, were reviewed and synthesized. Based on 
the above, we present the advantages likely to be obtained 
by combining these technologies in small-scale farming in 
Latin America and sub-Saharan Africa.

2 � Milpa in Mesoamerica: a highly successful 
traditional mixed‑cropping system

The pre-Columbian civilizations in Mesoamerica did not 
grow maize in extensive monocultures but rather used 
complex multi-cropping systems (Zizumbo-Villarreal and 
Colunga-GarcíaMarín 2010). By 4400 BP, they developed 
a planting technique known as milpa or “three sisters” 
(Zizumbo-Villarreal and Colunga-GarcíaMarín 2010). 
The term milpa may be broadly used to refer to any kind 
of maize-producing system (Lopez-Ridaura et al. 2021), 
but its more strict and original meaning involves inter-
cropping maize with beans (Phaseolus vulgaris/Phaseo-
lus lunatus) and squash (Cucurbita spp.) (Parsons et al. 
2009; Zizumbo-Villarreal and Colunga-GarcíaMarín 2010) 
(Fig. 1). The basis of the milpa system lies in the fact that 
the bean plant climbs the maize, increasing its access to 
light, and at the same time fixates nitrogen in the ground, 
which is then available for the other plants of the system 
(Zhang et al. 2014). The squash, with its broad leaves, 
shades the soil, protecting it against erosion, retaining soil 
moisture, and preventing competitive weeds from entering 
the system (Lopez-Ridaura et al. 2021).

Maize, beans, and squash were domesticated contempora-
neously in Mesoamerica and experienced natural and artifi-
cial selection leading to a high level of ecological adaptation 
to each other (Zizumbo-Villarreal and Colunga-GarcíaMarín 
2010). The milpa adapts to diverse soil and climatic condi-
tions and suffers from fewer pests and diseases than mono-
crop maize, also proving particularly efficient in terms of 
nutritional output (Van Rheenen et al. 1981; Morales and 
Perfecto 2000; Lopez-Ridaura et al. 2021). Indeed, the com-
ponent plants in a typical milpa system differ in their root 
crown architecture and vertical root distribution, leading to 
a high degree of complementarity and efficiency in terms 
of nutrient uptake, particularly nitrogen, and phosphorus 
(Zhang et al. 2014).

Smallholders in Latin America mostly use traditional 
agricultural systems based on polycultures such as milpa 
(Aldama et al. 2015; Suárez et al. 2022). Smallholder farm-
ing (farms with < 5 ha in production) in Latin America 
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represents circa 60% of the share of farms in the region, 
but only extends over less than 2% of the agricultural area 
(Lowder et al. 2021). However, the contribution of small-
holder agriculture to the general food supply in the region 
reaches on average 7% of the food calories produced, indi-
cating that smallholders have greater productivity per hec-
tare than larger farms (Samberg et al. 2016). When “family 
farming” is considered (farms held by a family unit and not 
a commercial company), this type of farming’s contribution 
to the regional food supply is considerably larger (Schneider 
2014; Lowder et al. 2021). The widespread use of milpa 
by smallholder and family farmers, especially in low-input 
cropping systems, is notably based on a 30% over-yield 
advantage over the average yield of the respective mono-
cultures (Altieri et al. 2012; Zhang et al. 2014). Compared to 
monocultures, milpa allows small-scale farmers to produce 
more food on the same land, while maintaining the yield of 
the main crop, maize (Altieri et al. 2012; Ebel et al. 2017; 
Lopez-Ridaura et al. 2021).

In Latin America, several native and exotic arthropods 
are considered pests of economic importance, in particular 
the lepidopterans Spodoptera spp., Helicoverpa spp., Agrotis 
ipsilon, and Diatraea saccharalis (Blanco et al. 2016; Varón 
de Agudelo et al. 2022). Spodoptera frugiperda (FAW) is 
commonly referred to as the most important maize pest in 
Latin America (Blanco et al. 2016; Hruska 2019). However, 
these pests are only problematic in large-scale maize farming 
(conventional and transgenic maize) and are not even men-
tioned among the most common herbivorous arthropods by 
traditional smallholder farmers (Morales and Perfecto 2000). 
In fact, no herbivorous arthropod is classified as a “pest” 
(i.e., surpassing economic threshold damage) by small-scale 
milpa farmers (Morales and Perfecto 2000).

Due to the increasing resistance of FAW to many insecti-
cidal proteins of Bacillus thuringiensis (Bt), multiple insec-
ticide applications, even in transgenic maize, are required 
to control FAW in large-scale maize farming (Blanco et al. 
2016). Blanco et al. (2016) cite potential losses of 100% in 
conventional large-scale maize plantations as a consequence 
of FAW attacks if left unattended. Regarding weed control, 
herbicides, such as glyphosate, are usually used in large-
scale maize farming and particularly in association with 
herbicide-tolerant biotech (Round-UP Ready technology) 
maize (Gianessi 2013; ISAAA 2018). In contrast, manual 
interventions are usually sufficient for smallholders to con-
trol noxious weeds (Parsons et al. 2009), as many naturally 
occurring weeds in milpa are used for food, medicinal 
or other purposes, and companion crops (e.g., beans and 
squash) already control the spread of most noxious weeds 
(Caamal-Maldonado et al. 2001; Lima et al. 2010; Le Garff 
2017). Although no parasitic specialist cereal weeds, such 
as those from the genus Striga, are known to occur in Latin 
America Striga spp. did invade the USA and Australia 
(Mohamed et al. 2006).

3 � The African cereal‑based Push‑Pull 
Technology

Maize arrived in Africa during the seventeenth century 
and spread rapidly throughout the continent, substitut-
ing traditional native cereals such as sorghum (Sorghum 
bicolor), pearl millet (Pennisetum glaucum) and finger 
millet (Eleusine coracana) as the preferred crop in many 
parts of the continent (Cherniwchan and Moreno-Cruz 
2019). As in Mesoamerica, maize is the main source of 

Fig. 1   Maize (Zea mays ssp. mays), 
beans (Phaseolus vulgaris), and squash 
(Cucurbita spp.) in the most traditional 
setting of the milpa system. The prin-
ciples of milpa are depicted, showing 
beans’ N-fixing nodules and root archi-
tecture complementarity (optimization 
of nutrient uptake), climbing support 
for beans (optimizing light intercep-
tion and photosynthesis), and ground 
cover by the leaves of Cucurbita spp. 
(moisture retention and soil erosion 
prevention). Root architecture modified 
from Postma and Lynch (2012).
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calories within cereals in sub-Saharan Africa and is fun-
damental for the food security of smallholders (Shiferaw 
et al. 2011). In sub-Saharan Africa, smallholders represent 
circa 90% of the share of farms and occupy approximately 
55% of the agricultural land, producing 50% of the calories 
in the region (Samberg et al. 2016; Lowder et al. 2021). 
Additionally, medium-sized farms (5–15 ha) account for 
another 26% of production (Samberg et al. 2016).

In Africa, maize production is severely limited by lepi-
dopteran pests, such as stemborers Busseola fusca, Chilo 
partellus, the fall armyworm (Spodoptera frugiperda, 
FAW), and by the obligate root parasite Striga weed (i.e., 
S. hermonthica and S. asiatica, Midega et al. 2018). Stem-
borers alone can cause up to 40% yield losses and striga 
weed can lead to a 100% yield loss if unattended (Khan 
and Pickett 2008). In the late 1990s, a stimulo-deterrent 
system for sustainable maize production was developed by 
the International Centre of Insect Physiology and Ecology 
(icipe) in Kenya, originally to control stemborers and striga 
weed without using pesticides or herbicides (Khan et al. 
2000; Khan and Pickett 2008). The so-called Push-Pull 
Technology integrates into the maize field a set of repellent 
companion and “dead-end” trap plants (Khan et al. 2001, 
2003) (Fig. 2). The PPT has proven to be highly efficient 
in increasing yields in an environmentally friendly man-
ner not only by controlling pests but also because of its 

benefits in terms of soil moisture retention and soil fertility 
improvement. Average yield increases of 50% and 20% were 
attained in areas with and without striga weed, respectively 
(Khan and Pickett 2008).

The PPT is based on intercropping maize with 
Desmodium spp., a plant genus native to the Americas. 
Desmodium spp. have pest repellent properties and also 
the capacity to control Striga spp. by provoking abor-
tive germination of its seeds (Khan et al. 2003). At the 
same time, the properties of Desmodium spp., as a leg-
ume, enhance soil fertility by fixing nitrogen in the soil, 
and its extensive cover between the rows of maize helps 
retain soil moisture in otherwise dry conditions. Addi-
tionally, a dead-end trap plant (i.e., a plant attractive to 
female moths but in which larvae cannot develop), such 
as Napier grass (Pennisetum purpureum) or Brachiaria 
spp., is used around the plot edges to act as a “pull” for 
the pests (Khan et  al. 2014; Cheruiyot et  al. 2021a). 
Both companion plants also represent valuable sources 
of fodder for dairy animals. Different versions of PPT 
have been developed, including highly successful first-, 
second-, and third-generation “climate-smart” variants 
(Cheruiyot et al. 2021a). Besides controlling both stem-
borers and striga weed, PPT has proven effective against 
the recent invasion of polyphagous FAW from America 
(Midega et al. 2018).

Fig. 2   Push-pull mechanism showing the repellent effects of Desmo-
dium spp. on maize stemborers and the attractant properties of trap 
plants such as Brachiaria spp. and Napier grass Pennisetum pur-
pureum. The attraction of natural enemies by companion plants is 
also shown, as well as the capacity of Desmodium spp. to fix nitrogen 

and stimulate abortive germination of Striga weeds through root exu-
dates. Maize roots modified from Postma and Lynch (2012), Desmo-
dium roots modified from Hooper et al. (2015), and Brachiaria roots 
modified from Galdos et al. (2020).
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There is currently an open debate on the exact mecha-
nisms by which the PPT controls FAW. On the one hand, 
Sobhy et al. (2022) found that all companion plants tested 
(D. uncinatum, D. intortum, and Brachiaria brizantha cv 
Mulato II) constitutively emit volatile compounds that repel 
adult FAW moths and attract parasitoids. On the other hand, 
Erdei et al. (2022) propose that the fundamental mechanism 
is based on the preference of first instar FAW larvae on D. 
intortum over maize as the host plant although the plant 
does not allow FAW development (i.e., causes 100% lar-
val mortality). Instead of repelling adult FAW moths, these 
authors report evidence of D. intortum acting as a pull plant 
for neonate-dispersing FAW larvae in search of a new host 
(Erdei et al. 2022). Although there is general agreement 
on the efficiency of PPT to control FAW, the elucidation 
of specific mechanisms is of major importance in order to 
develop natural pest control strategies in other crops and 
regions of the world. Decoding the reasons behind these 
seemingly contradictory findings will bring to light a deeper 
mechanistic understanding of PPT .

4 � Milpa push‑pull as a versatile solution 
to key agronomic limitations

We propose that a combination of traditional indigenous 
milpa with recent advances in PPT would represent a highly 
effective synergy for the biological control of maize pests 
and weeds, high yields, and diversified production. Both sys-
tems can be easily combined and adapted to region-specific 
farming conditions, with large potential benefits in terms 
of reduction of agrochemical inputs, crop yields, revenue, 
protection of biodiversity and cultural traditions. A milpa 
push-pull combination has the potential to robustly mitigate 
weeds and pests while also providing smallholder farmers 
with optimal food production and a diverse nutritionally-
balanced harvest. Here, we describe how the milpa princi-
ples can be combined with the PPT to attain their mutual 
benefits. Furthermore, we critically assess the characteristics 
of the plants involved in the milpa and push-pull systems and 
discuss the possibility of using alternative plants in certain 
scenarios.

4.1 � Parallels of the two systems: intercropping 
of cereals and legumes

In sub-Saharan Africa and Latin America, maize and 
leguminous plants, including beans (Phaseolus vul-
garis), soybean (Glycine max), cowpea (Vigna unguicu-
lata), pigeon pea (Cajanus cajan), bambara nut (Vigna 
subterranea), green gram (Vigna radiata) and ground-
nut (Arachis hypogaea) are commonly planted together 
for their ecological complementarity and associated 

overyielding (Mucheru-Muna et al. 2010; Muoni et al. 
2019). This overyielding is partly explained by the 
capacity of legumes to fix nitrogen in the soil, which is 
then available to other plants, such as maize. Addition-
ally, cereal-legume associations tend to have fewer pests 
and pathogens than their respective monocultures (Van 
Rheenen et al. 1981; Fininsa 2003), including reduced 
severity of FAW attack (Hailu et al. 2018; Udayakumar 
et al. 2021). These properties explain why cereal-legume 
associations, particularly climbing beans and maize/
sorghum, are so popular among smallholder farmers in 
Africa and Latin America and constitute the backbone 
of smallholder production.

4.2 � Lessons from Mesoamerican milpa for African 
push‑pull systems: diversification of food 
production, nutritional balance and the fight 
against FAW

Arguably, the strongest virtue of milpa systems is the high 
diversification of food production, the derived nutritional 
balance, and the “insurance” against total production failure. 
In other words, milpa systems maximize the volume and 
diversity of food elements, leading to a high nutritional bal-
ance in terms of macro- and micronutrients (Lopez-Ridaura 
et al. 2021). The accumulation of long-term knowledge 
on the most suitable plant combinations can be extremely 
valuable to enrich and accelerate the more recent efforts at 
food plant diversification currently underway in Africa (Chi-
dawanyika et al. 2023).

One such example is the incorporation of Cucurbita spp. 
to cereal-legume smallholder production in Africa. The role 
of Cucurbita spp. within milpa systems partially overlaps 
that of Desmodium spp. within PPT, as both are responsible 
for soil moisture retention, reduction of soil erosion, and 
prevention of noxious weeds entering the system. But while 
Desmodium spp. are only used as fodder, Cucurbita spp. are 
a source of micronutrients, especially vitamin A, which are 
fundamental for an appropriate nutritional balance (Ndoro 
et al. 2007; Lopez-Ridaura et al. 2021). Cucurbita spp. are 
not unfamiliar to African smallholder farmers; maize-pump-
kin intercropping is very common in southern Africa where 
farmers use all parts of the plant for food, including leaves, 
flowers, and seeds (Silwana and Lucas 2002; Maereka et al. 
2009). However, its combination with cereal-legume inter-
cropping is rare (Baudron et al. 2019), especially in other 
African regions.

Non-surprisingly, most knowledge on agroecological 
strategies against FAW comes from Latin American small-
holders (Harrison et al. 2019). Cucurbita spp., for exam-
ple, have been found to reduce FAW attack when inter-
cropped with maize in Latin America (García González 
et al. 2010, 2013). On the contrary, the only study that 
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analyzed the effect of maize-pumpkin intercropping on 
FAW in Africa found increased FAW damage in maize-
pumpkin treatment and no effect in the pumpkin-pulse-
maize treatment compared to monocrop (Baudron et al. 
2019). There is currently no clear explanation for this 
contradiction, which signals that complex interaction 
mechanisms are at play in these systems that are not yet 
understood and require additional research. Notably, this 
may signal context-dependent effects and non-trivial rela-
tionships among natural enemies in each local food web 
underpinning pest control services (Chen et al. 2017).

Among small-scale farmers in Latin America FAW does 
not usually reach economic thresholds (Wyckhuys and 
O’Neil 2006) and is commonly considered a herbivore of 
lesser importance that requires no particular management, 
especially in the highlands (Morales and Perfecto 2000; 
Wyckhuys and O’Neil 2007). The situation is different in 
large-scale maize monocultures in Latin America where 
FAW is usually a serious problem (Blanco et al. 2014). 
Smallholders in Latin America benefit from pest control 
services provided by a diverse array of predators and para-
sitoids that have coevolved with FAW (Molina-Ochoa et al. 
2004; Rios-Velasco et al. 2011). These include wasps, flies, 
carabids, ants, spiders, and bats that are associated with 
native vegetation in the surroundings of plantations from 
which they can spillover to maize crops (Wyckhuys and 
O’Neil 2010; Maine and Boyles 2015; Cinel and Taylor 
2019). This network of specialist and generalist natural ene-
mies also profits from the multicropping systems used by 
small-scale farmers in Latin America due to the presence 
of alternative food resources and nesting sites (Nicholls 
and Altieri 2004; Altieri et al. 2012). Although special-
ist natural enemies of FAW, such as Hymenoptera (e.g., 
Eiphosoma laphygmae, Allen et al. 2021) and Diptera para-
sitoids are not expected to occur in Africa and Asia, where 
it has recently spread (Roy et al. 2011), a number of gener-
alist natural enemies have been identified so far in its new 
range, including several parasitoids and ants (Abang et al. 
2021; Mohamed et al. 2021; Kenis et al. 2022). Consider-
ing that other Spodoptera spp. are native to Africa such as 
Spodoptera exempta and Spodoptera littoralis host switch-
ing by indigenous parasitoids of Spodoptera spp. or other 
noctuids, could open an opportunity for biological pest 
control of FAW (Roy et al. 2011; Mohamed et al. 2021), as 
has already occurred with Telenomus remus in Asia (Kenis 
et al. 2019; Liao et al. 2019; Colmenarez et al. 2022) and 
with Cotesia sesamiae and Cotesia icipe in Africa (Fia-
boe et al. 2017; Agbodzavu et al. 2018; Sisay et al. 2018; 
Abang et al. 2021; Mohamed et al. 2021). Additionally, the 
dependency of these natural enemies on proximal natural 
vegetation has recently been proven in Africa (Clarkson 
et al. 2022; Jordon et al. 2022). Hruska (2019) and Har-
rison et al. (2019) have extensively described a number of 

strategies that smallholders in Africa and Asia could use, 
inspired by the American experience, that can contribute 
to palliate FAW damage, such as which, when and how to 
intercrop plant species and several cultural and landscape 
management recommendations and also have pointed to 
the most important knowledge gaps and research priorities.

4.3 � Widening perspectives: centers of origin 
and traditional agroecological knowledge 
as foundations for sustainable intensification

To understand how agroecological systems work, it is 
essential to study them at their centers of origin (Chen et al. 
2017). A good example of this comes from the election of 
Desmodium species in the African push-pull systems. Origi-
nally, the species D. uncinatum was used as a repellent plant 
(Cook et al. 2007), but as this species could not resist long 
periods of drought, it has been substituted with D. intortum, 
D. incanum, and other drought-resistant species during the 
last decade (Midega et al. 2018; Cheruiyot et al. 2021a). In 
fact, D. uncinatum is a forest species in its native range in 
South America, which may explain why it is not as toler-
ant to drought as other species in the genus (Vanni 2001). 
The drought-tolerant D. incanum (Midega et al. 2017) is a 
grassland-adapted species from the south of South Amer-
ica, which may explain its higher tolerance to drought and 
frost (Crosa et al. 1999). D. incanum is currently the recom-
mended push plant of the so-called third-generation PPT 
(Cheruiyot et al. 2021a).

Local traditional knowledge is also key, particularly in 
millenary cultivation systems such as the milpa, because 
much can be learnt from the empirical experiences of 
farmers (Morales and Perfecto 2000; Lopez-Ridaura et al. 
2021). Knowledge from centers of origin is also funda-
mental in terms of pest management (Altieri 1980) and 
will be especially important in Africa and Asia to learn 
how to better deal with the noxious FAW invasion from the 
American experience (Hruska 2019). This is particularly 
relevant considering that exotic FAW is displacing native 
stemborers such as Busseola fusca and Sesamia calamistis 
in some parts of Africa (Sokame et al. 2020, 2021). For 
example, it has been demonstrated in American systems 
attacked by FAW that beans should be planted consider-
ably earlier than maize to achieve better protection against 
FAW (Altieri 1980). The same recommendation has been 
made regarding trap plants for FAW in African systems 
(Cheruiyot et al. 2021b).

Unfortunately, knowledge is often lost because a great 
deal of information is only available in local languages. 
In milpa systems, for example, knowledge is usually only 
available in Mayan languages and, if at all, translated and 
published in Spanish (Morales and Perfecto 2000; Ebel et al. 
2017). This may also be the case for some native plants in 
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Africa that could potentially be used for milpa push-pull 
systems but whose usage is stored in local languages (Muoni 
et al. 2019), such as Cleome (= Gynandropsis) gynandra as 
a repellent plant for spider mites (Nyalala and Grout 2007). 
The protection of local indigenous languages and popula-
tions is likely to mean the protection of invaluable agricul-
tural knowledge at the foundation of global food security.

4.4 � Lessons from African PPT for Mesoamerican 
milpa systems: fight against Striga spp., control 
of lepidopteran pests and fodder production

Although currently absent in Latin America, striga weed has 
been found to have a high invasive potential in Latin Amer-
ica, and an invasion of the region in the near future cannot 
be excluded (Mohamed et al. 2006). In fact, striga weed was 
introduced and spread through the states of Florida, North 
and South Carolina (USA), and was eventually eradicated 
after several decades of interventions and significant expendi-
tures from the local governmental agencies (Mohamed et al. 
2006). To avoid major yield losses, as happened with the 
vertiginous FAW spread in Africa, Asia, and Oceania, Latin 
American farmers should be aware of the African experience 
with this parasitic weed. Many small-scale farmers in Africa 
rotate maize with beans (or other legumes) to fight striga 
weed, given that legumes stimulate striga weed germina-
tion, which later dies in the absence of a cereal host (Oswald 
and Ransom 2001). Among legumes, the use of Desmodium 
spp. in push-pull systems as an intercrop is particularly effec-
tive when striga weed is a problem and when maize is to be 
planted continuously throughout the seasons, without crop 
rotation (Khan et al. 2007). This is because Desmodium spp., 
unlike most other legumes, not only induces striga weed 
seeds to abortive germination but also prevents Striga from 
attaching to maize roots via allelopathic effects of their root 
exudates (Khan et al. 2007, 2014). A further advantage of 
Desmodium spp. is that they are perennial legumes and can 
fix more nitrogen in the soil than annual legumes provided 
that they can establish mutualistic interactions with specific 
rhizobia (Khan and Pickett 2008; Granada et al. 2014). Also 
Desmodium spp. intercropping has been found to induce 
increased plant defense through plant-soil feedback (Muty-
ambai et al. 2019; Erdei et al. 2022). The edible Crotalaria 
brevidens and Crotalaria ochroleuca have also been found 
to induce suicidal germination and prevent Striga hermon-
thica radicle development (Mwakha et al. 2020). In addition, 
D. intortum and C. ochroleuca were found to be the only 
two intercrop legumes, among several tested, to significantly 
reduce the emergence of S. hermonthica and increase maize 
height (Khan et al. 2007). Given the well-studied allelopathic 
effects of C. juncea (Skinner et al. 2012; Bundit et al. 2021) 
and the demonstrated allelopathy of root extracts in several 
other Crotalaria spp. (Rugare et al. 2021), it is possible that 

C. ochroleuca and C. brevidens also rely on the same mecha-
nism to control S. hermonthica.

Despite being native to the Americas, Desmodium 
spp. are largely ignored in their potential to control FAW 
and other pests on that continent, and to our knowledge, 
are not used as a repellent intercrop in any traditional 
Latin American cultivation system so far. Considering 
the increasing pressure of FAW attack on maize and the 
weakening of natural enemies’ networks resulting from 
pesticide overuse in large-scale farms, deforestation, and 
climate change, Desmodium spp. may also be a candidate 
intercrop for smallholders to consider in Latin America. In 
fact, the inclusion of Desmodium spp. or other push plants 
may also allow for the sustainable intensification of maize 
crops and contribute to the control of other lepidopteran 
pests such as Helicoverpa spp. and Agrotis ipsilon. Moreo-
ver, it could be an option to produce more fodder without 
losing pest control properties or even be an alternative to 
Bt maize (Midega et al. 2006). The grasses used as trap 
plants in Africa (i.e., P. purpureum, Brachiaria cv Mulato 
II and Brachiaria cv Xaraes) have proven effective over 
the years for controlling African stemborers (Khan et al. 
2003; Midega et al. 2015). However, they are found to per-
form poorly as pull trap plants for the American FAW, in 
particular the most commonly used trap plant, Brachiaria 
brizantha cv Mulato II (Guera et al. 2020; Scheidegger 
et al. 2021; Cheruiyot et al. 2021b). Guera et al. (2020) 
found that only Panicum maximum cv. Mombasa was 
significantly preferred by adult FAW moths for ovipo-
sition over maize, while also having a low survival rate 
of the larvae (15%). Cheruiyot et al. 2021b reported that 
FAW laid more eggs on B. brizantha cv. Xaraes and P. 
purpureum cv. South Africa than on maize in two-choice 
tests, but only when these grasses were double the size of 
maize. Overall, FAW larvae do not prefer any of the tested 
pull grasses over maize in two-choice tests (Guera et al. 
2020) and all of them attracted significantly less larvae 
than maize after 48 h (Cheruiyot et al. 2021b). This means 
that, until better alternative trap plants for FAW are found, 
a trap plant may not be convenient in the Americas, as it 
may not compensate the opportunity costs of the land used 
for it in the absence of fodder requirements for dairy ani-
mals. Similarly, considering that FAW is displacing native 
stemborers such as Busseola fusca and Sesamia calamistis 
in some parts of Africa (Sokame et al. 2020, 2021), the 
importance of trap plants in African push-pull systems, 
especially in regions affected mainly by FAW should be 
revisited. Recently, Sobhy et al. (2022) found that none of 
the climate-smart PPT companion plants act as a pull trap 
plant for adult FAW moths, but rather all of them (includ-
ing the border grass Brachiaria brizantha cv Mulato II) 
act as push plants for the pest and attractants to two of its 
natural enemies in Africa. Erdei et al. (2022) studied FAW 
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larval behavior towards D. intortum and found that this 
perennial legume functions as a dead-end trap plant for 
FAW larvae. Taken together, these studies show that PPT 
control of FAW does not occur by the same mechanisms as 
African stemborers, thus opening a range of possibilities to 
further maximize the efficacy of the system to control FAW 
through variations in the choice of companion plants, plant 
densities and spatial arrangement of PPT components.

4.5 � The milpa push‑pull system

Considering the above and the fact that beans intercropping 
has been shown to be compatible with PPT (Khan et al. 2009), 
we propose that already a basic form of a combined milpa 
push-pull system, i.e., a multi-crop association including 
maize planted in alternating rows with Desmodium spp. and 
Cucurbita spp. and enriched within the same row with climb-
ing beans (Fig. 3), would be a useful framework to consider 
for further intensification of smallholder maize production. 
Furthermore, such a system could use a trap plant such as P. 
maximum cv. Mombasa or B. brizantha cv. Xaraes, where 
fodder production is desired and/or FAW pressure is high.

Other legume-enriched push-pull systems that diversify 
food production, increase nitrogen fixation, and enhance pest 
control might also be envisioned. We propose that a flexible 
milpa push-pull can be developed that builds on the benefits 
of species combinations classically found both in milpa and in 
PPT. Such a system should allow flexibility according to the 

most appropriate combination of push-and-pull plants given 
variables such as rainfall pattern, Striga pressure, FAW and 
stemborer pressure, nutritional needs, and cultural and food 
preferences of the farmers. Both the milpa and PPT show a high 
capacity to be adapted to cope with different challenges includ-
ing varying climatic regimes (Murage et al. 2015; Midega et al. 
2015, 2018). The same properties of flexibility and adaptability 
are likely to be transferred to their combination.

A basic milpa push-pull system could use all plant combi-
nations traditionally practiced in milpa systems, including the 
addition of potato, faba bean, amaranth, peas, tomato, pepper, 
and other green vegetables (Lopez-Ridaura et al. 2021). Such 
a system would largely benefit from the knowledge generated 
recently on push-pull intensification with vegetables, includ-
ing cabbages, kales, cowpeas, African nightshade, tomatoes, 
and onions (Chidawanyika et al. 2023).

Drought-resistant intercrop species such as Desmodium 
incanum may be selected preferentially in areas with long 
droughts (Midega et al. 2017). In areas with low or no inci-
dence of striga weeds and low to moderate FAW occurrence, 
or where farmers practice crop rotation between legumes 
and cereals, Desmodium spp. may be optionally substituted 
with other repellent intercrops, particularly species of high 
value as food (Table 1). In the presence of annual legumes 
(e.g., beans) in the system, non-legume-repellent intercrops 
could also be considered as candidates without compromis-
ing nitrogen fixation and associated high soil fertility (Guera 
et al. 2020, 2021).

Fig. 3   Milpa push-pull showing a possible arrangement of the 
merged system, especially for regions affected by striga, including 
intercropped maize, beans climbing the maize stalks, squash, Desmo-
dium, and a trap plant surrounding the plot. In this system, the com-
bination of maize, Desmodium, and the trap plant originates from the 

push-pull cropping system (Fig.  2), whereas the maize, beans, and 
squash mixture is the basic foundation of the Latin American milpa 
(Fig.  1). Maize, beans and squash roots modified from Postma and 
Lynch (2012), Desmodium roots modified from Hooper et al. (2015) 
and Brachiaria roots modified from Galdos et al. (2020).
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4.6 � Other potential plant candidates 
and combinations for effective milpa push‑pull

Many Desmodium spp. are edible and used for human con-
sumption, among various uses, in some parts of the world 
(Ma et al. 2011), but this is neither common in America nor 
Africa. In Latin America, since striga weed is not yet pre-
sent (Mohamed et al. 2006), other edible legumes with pest-
repellent properties may represent better options as “push” 
components in an adapted milpa push-pull. For instance, 
recently, a maize push-pull system, inspired by the African 
experience, has been adapted in Mexico (Guera et al. 2021). 
Instead of Desmodium spp., these researchers used two 
native plants (Tagetes erecta and Dysphania ambrosioides) 
and the introduced legume (Crotalaria juncea) as repellent 
intercrops. They found that the system successfully reduced 
the incidence and severity of FAW up to 70% and 60% com-
pared to a monocrop, respectively. Additionally, the system 
retained soil moisture and more than doubled maize yields 
(Guera et al. 2021). Interestingly, all repellent plants used in 
Guera et al. (2021) are edible (mostly used as condiments) and 
have multiple other purposes. Tagetes erecta for example, is 
cultivated to be used as feed, food pigment, ornament (includ-
ing the famous Mexican Day of the Dead), and a medicinal 
plant (Hadden et al. 1999; Shetty et al. 2015). Furthermore, 
its roots produce secretions that have insecticidal and nemati-
cidal effects that were found to suppress nematode pests when 
intercropped with cowpea (Olabiyi and Oyedunmade 2007). 
Dysphania ambrosioides is also frequent in the Mexican mar-
kets for its popularity as a condiment in a wide variety of 
regional foods although it is also consumed raw (Manzanero-
Medina et al. 2020). Crotalaria, notably, is a drought-resistant 
genus of leguminous plants with hundreds of species, most of 
them native to East Africa, India, and America (le Roux et al. 
2013). In addition to fixing nitrogen and repelling FAW, C. 
juncea attracts beneficial insects like parasitoids and pollina-
tors, retains soil moisture, and prevents the development of 
noxious weeds (Guera et al. 2021; Bundit et al. 2021).

Specifically, Crotalaria juncea has been shown to attract 
predatory wasps (Vespidae) from the genera Polistes, Brach-
ygastra, and Protonectarina, increasing the predation rates 
of the coffee-leaf-miner (Leucoptera coffeella), an important 
lepidopteran pest in coffee (Rosado et al. 2021). Given that 
the genera Polistes and Polybia have been found to attack 
both FAW and coffee leaf miner (Carvalho et al. 2005; 
Pereira et al. 2007; Held et al. 2008; Saraiva et al. 2017; 
Southon et al. 2019; Rosado et al. 2021), Crotalaria jun-
cea may thus also increase predation rates of FAW in maize 
in addition to its pest repellent effects. Similar synergistic 
effects between coffee and maize regarding biological pest 
control could be mediated by the presence of Chrysopidae, 
such as Chrysoperla externa, the larvae of which are known 

to prey on both L. coffeella and FAW (Tavares et al. 2012; 
Silva et al. 2022). Coffee volatiles can also attract preda-
tory wasps and other FAW predators, producing synergis-
tic effects between coffee and maize intercropped with C. 
juncea in terms of predator presence and predation rates, 
as these are commonly planted in close vicinity in many 
tropical regions (Fernandes et al. 2010). Other potential 
milpa push-pull intercrops may also have attractive effects 
on natural enemies, notably squash (García González et al. 
2013), but they remain largely to be investigated (Table 2). 
Additionally, milpa push-pull and versions thereof are likely 
to also be a valuable resource for pollinators and for biodi-
versity in general given the variety of flowers, pollen, and 
other resources it can shelter (Nicholls and Altieri 2013), 
as known in similar mixed cropping systems. However, the 
value of these multicropping cereal-based systems for wild 
and managed bees has only recently started to be studied 
(Hüber et al. 2022; Kirsch et al. 2023). Some Crotalaria 
species (e.g., C. ochroleuca, C. arenaria, C. juncea) also 
provide nematicidal effects against certain pathogenic nema-
todes (Kushida et al. 2003; Germani and Plenchette 2005; 
Wang et al. 2002), including the root-knot nematodes (Do 
Nascimento et al. 2020). However, Crotalaria juncea, is also 
reported to be a host to Microtechnites bractatus (Hemip-
tera: Miridae) (Ribeiro et al. 2020) and Dalbulus maidis 
(Hemiptera: Cicadellidae) (Tavares et al. 2011; de Lange 
et al. 2014) that are also known maize pests. Nonetheless, 
intercropping C. juncea at adequate planting timings and 
densities does not affect maize yields and is superior to 
other legume cover crops in terms of biomass productiv-
ity (Dzvene et al. 2022). Hence, it is essential to be selec-
tive and ensure proper planting and management routines 
that avoid unintended negative effects when choosing Cro-
talaria species. Crotalaria spp., such as C. longirostrata 
(locally known as “chipilin”) and C. pumila, are already a 
frequent part of milpa systems in America, where they are 
planted mainly for human consumption (Morton 1994; Le 
Garff 2017; Manzanero-Medina et al. 2020). Furthermore, 
the leaves of C. brevidens and C. ochroleuca (commonly 
known as “Marejea” or “Mitoo” in Tanzania and Kenya and 
“Alaju” in Uganda) are also consumed as leafy vegetables 
and condiments in some African countries (Maundu et al. 
1999; Oluoch et al. 2009; Mwakha et al. 2020; Muli et al. 
2020). In fact, the market value of indigenous African leafy 
vegetables (including C. brevidens and C. ochroleuca) is 
calculated to be worth billions of US dollars (Weinberger 
and Pichop 2009) and is especially important in East Africa 
(Imathiu 2021). It should be tested whether the repellent 
effects of C. juncea against FAW (Guera et al. 2021) are 
exhibited by other Crotalaria spp., as has been found for 
some Desmodium spp. (Cheruiyot et al. 2021a), and particu-
larly edible Crotalaria species. If edible Crotalaria species 
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show repellency against FAW, they could be considered can-
didates in addition to Desmodium spp. in milpa push-pull 
systems in Africa and America. Other Crotalaria spp. such 
as C. grahamiana have already been studied because of their 
potential usefulness e.g., in reducing Striga weed (Gacheru 
and Rao 2005). But to our knowledge, no study other than 
Guera et al. (2021) has focused on Crotalaria spp. repel-
lency as intercrops toward lepidopteran pests of cereals so 
far. Similarly to Desmodium spp. in America, the potential 
of Crotalaria spp. as lepidopteran repellents in push-pull 
systems has to date been largely ignored in Africa, even 
though its potential to control striga weed has been previ-
ously studied (Khan et al. 2007).

Another prime candidate companion crop for the milpa 
push-pull system is pigeon pea (Cajanus cajan, Fabaceae). It 
is an important tropical grain legume traditionally cultivated 
in many parts of Africa, Asia, and the Americas (Saxena 
2008). Pigeon pea is known for multiple benefits, and its 
compatibility with cereal crops in intercropping, perennial 
and rotational cropping, or improved fallow practices are 
also well documented (Abunyewa and Karbo 2005; Mwila 
et al. 2021). Intercropping maize with pigeon pea increases 
crop productivity (Myaka et al. 2006; Ngwira et al. 2012; 
Mwila et al. 2021), resulting in a land equivalent ratio of 
up to 1.77 (Asiwe and Madimabe 2020). It is a highly edi-
ble crop to humans and livestock, rich in protein and other 
essential nutrients, which can provide nutritional and eco-
nomic benefits to farmers (Odeny 2007). Moreover, many 
cultivars of pigeon pea have drought-resistant and nitrogen-
fixing qualities (Njira et al. 2017). As a hardy plant, some 
cultivars possess traits to thrive in drought and low fertility 
conditions, making the crop an ideal “climate-proof” crop 
for farmers in drought-prone regions (Valenzuela and Smith 
2002; Renwick et al. 2020). Pigeon pea has proven to be a 
reliable source of grain yield, even during prolonged dry 
spells when other field legumes may have withered (Odeny 
2007). With nitrogen fixation by pigeon pea intercrop, farm-
ers can improve soil fertility and reduce the need for syn-
thetic fertilizers, which can be expensive and also harmful 
to the environment.

Studies have tested the potential of pigeon pea as a trap 
companion crop for reducing crop damage by polyphagous 
lepidopterans such as Helicoverpa (Heliothis) spp. (Tann 
2011; Ratnadass et al. 2014), which are serious pests of 
many field crops including pulses, vegetables (e.g., tomato 
and okra), cotton, some cereals, and oilseeds (Ali et al. 2006; 
Bentivenha et al. 2016). A push-pull strategy was reported 
for controlling Heliocoverpa (Heliothis) pests in cotton 
fields, which involved the use of a repellent (neem extract) 
to “push” the moths away from the cotton plants and “pull” 
them towards the trap crop (pigeon pea) (Pyke et al. 1987). 
Moreover, cereal-pigeon pea intercropping has potential 
to reduce Striga weed infestations (Oswald and Ransom 

2001; Odeny 2007), although it is inferior to Desmodium 
distortum, Sesbania sesban, S. cinerascens, Crotalaria gra-
hamiana, and Tephrosia vogelii to reduce Striga attack and 
increase maize yields (Gacheru and Rao 2005).

While the aforementioned points provide support for 
integration of pigeon pea into milpa push-pull systems, it is 
important to note that selecting the appropriate pigeon pea 
varieties is crucial, as certain short-duration varieties may be 
susceptible to insect pest attack (Jones et al. 2002; Kaoneka 
et al. 2016). Shading and light competition effects of some 
perennial cultivars on other crops may also raise concerns, 
but implementing timely ratooning could make an effective 
management strategy (Rusinamhodzi et al. 2017). Nonethe-
less, realizing the full benefits of pigeon pea in milpa push-
pull systems calls for further research and development.

Four other plants have high potential for milpa push-pull, 
namely molasses grass (Melinis minutiflora), Vetiver grass 
(Vetiveria zizanioides), Amaranth (Amaranthus spp.), spider 
plant (Cleome gynandra Synonym: Gynandropsis gynan-
dra). In the absence of striga weed, molasses grass has been 
recommended as an alternative repellent (i.e., push) plant 
in Africa to fight stemborers (Storkey et al. 2019) and FAW 
(Cheruiyot et al. 2021b), despite its lack of the nitrogen-
fixing benefits of legumes. The potential of M. minutiflora 
intercrop as a “push” plant in PPT has been previously inves-
tigated (Khan et al. 1997). M. minutiflora integration as a 
one-to-one intercrop without changing the row spacing of 
maize crop reduced stemborer damage from 39.2 to 4.6% 
(Khan et al. 1997). M. minutiflora intercrop:crop ratio can 
even be reduced to a ratio of 1:10 and still produce sig-
nificant stemborer reduction (Khan et al. 2000). As Tolosa 
et al. (2019) noted, intact M. minutiflora neighbouring maize 
field releases volatile organic compounds (VOCs) that repel 
stemborers from maize and enhance parasitism by Cotesia 
sesamiae (Cameron). Erdei et al. 2022 also reported that M. 
minutiflora constitutively releases a variety of terpenes with 
the ability to deter common maize pests, and this further 
reinforces its potential as a viable alternative to Desmodium 
intercrop where Striga weed is less prevalent. M. minutiflora 
has also been successfully used as “push” intercrop to the 
sugarcane stemborer (Eldana saccharina) and attractant of 
one of its parasitoid natural enemies (Xanthopimpla stem-
mator Thunberg (Hymenoptera: Ichneumonidae) (Cockburn 
et al. 2014). Outside of its native range, the use of M. minuti-
flora should be discouraged due to its high invasive potential 
(Hoffmann et al. 2004; Hoffmann and Haridasan 2008).

Vetiver grass has been found to be a good trap plant for 
Chilo partellus in Africa (van den Berg 2006b), it is also 
important in preventing soil erosion and has value as animal 
feed (Truong et al. 2008). Additionally, Vetiver grass attracts 
several parasitic wasps such as Telenomus spp. and Tricho-
gramma spp. (Lu et al. 2019). In terms of food diversity, 
Amaranth (Amaranthus spp.) adapts well to multicropping 
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systems such as the milpa and is highly appreciated and used 
in Africa and America for its nutritional value (Fomsgaard 
et  al. 2011; Alemayehu et  al. 2015). Nonetheless, cau-
tion should be given to the fact that Amaranthus spp. are 
a host of African Spodoptera spp. such as S. littoralis and 
S. exigua (Fiaboe et al. 2017). Cleome gynandra is another 
nutritious and popular plant that could be incorporated into 
milpa push-pull systems in Africa, especially as a source 
of protein and vitamin A in regions where cucurbits are not 
preferred (Mishra et al. 2011). Cleome gynandra is a fast-
growing leafy vegetable that is widespread in West and East-
ern Africa and is increasingly valued as a commercial crop 
(Achigan-Dako et al. 2021). Cleome gynandra is also effec-
tive as a repellent plant for spider mites (Tetranychus spp.), 
which represents a serious problem for the trap plant Bra-
chiaria brizantha cv Mulato II (Nyalala and Grout 2007). 
However, C. gynandra has also been found to be an alternate 
host of Eurystylus oldi (Hemiptera, Miridae), a pest of sor-
ghum (Ratnadass et al. 2012).

5 � Remaining questions

There are several knowledge gaps that require further 
research in order to fully leverage the potential and adapt-
ability of mixed push-pull and milpa systems for sustainably 
intensified smallholder cereal farming. In Tables 1, 2, and 
3, we review and summarize the diversity of plants with a 
documented potential to play effective roles in intensified 
mixed cereal systems according to socio-cultural needs and 
local environmental pressures and conditions. As outlined 
above, some of these species have been tested for effective-
ness under selected conditions, while others remain to be 
investigated. However, only a fraction of potentially prom-
ising interacting species is currently used in the context of 
traditional milpa and push-pull systems.

Through a qualitative literature review, we identified 
30 plants that are either already classically employed in 
smallholder cereal mixed cropping systems in America 
and Africa, or have been referenced and/or tested for their 
potential to play an active role in these systems (Table 1). 
Among these, species combinations with high potential 
effectiveness for various agroecologies remain to be trialed 
(Tables 2 and 3). For example, possible repellent effects of 
Crotalaria spp. apart from C. juncea on FAW are not yet 
known, especially C. longirostrata and C. pumila in Latin 
America and C. brevidens and C. ochroleuca in Africa. 
With ongoing climate change, FAW invasion may reach 
other regions of the world such as Europe and Canada that 
were previously too cold for its survival. Striga is also 
forecast to attack the south of Europe (Mohamed et al. 
2006). Therefore, research on European maize and other 

cereal production, such as wheat (Vasey et al. 2005), could 
focus on agricultural strategies to prevent the likelihood 
of crop damage due to these threats in the near future. 
Spodoptera spp., Helicoverpa spp., and Agrotis ipsilon are 
cereal crop pests in both America and Africa which opens 
opportunities for further cooperation and research on best 
practices for biological pest control enhancement (Tay 
et al. 2013; Jones et al. 2019; Hruska 2019; Rodingpuia 
and Lalthanzara 2021).

Molasses grass is known to repel adult stemborer and 
FAW moths, limiting oviposition in their main host maize 
(Storkey et al. 2019; Cheruiyot et al. 2021b). Moreover, simi-
larly to what Erdei et al (2022) observed with Desmodium 
spp., Cheruiyot et al. (2021b) have recently demonstrated that 
M. minutiflora is the only plant preferred by FAW larvae over 
maize among the six potential pull grasses tested, although it 
is not suitable for larval development. Considering that after 
hatching FAW larvae can move to alternative hosts (Rojas 
et al. 2018), Cheruiyot et al. 2021b propose a novel intercrop-
ping design based on FAW larval behavior and preferences 
that remains to be tested.

The poor performance of the trap plants tested so far for 
FAW, which fail to preferentially attract adult FAW moths 
over maize and/or to retain and kill FAW larvae (Guera et al. 
2020; Cheruiyot et al. 2021b), highlights the necessity to test 
other species for this purpose. This could be an opportunity 
to experiment with plants that, beyond the function of trap 
plants for FAW, may also have value as a food source. In 
particular, millets from the genera Panicum, Pennisetum, and 
Paspalum may be explored, as species within these groups 
are recognized for their nutritional value and broadly planted 
in various regions of the world (e.g., Proso millet Panicum 
miliaceum, little millet Panicum sumatrense, Sonoran pan-
icgrass Panicum sonorum, pearl millet Pennisetum glaucum 
and Kodo millet Paspalum scrobiculatum). Some species 
in these genera are known to control FAW to some degree, 
including Panicum maximum, Pennisetum purpureum, Pas-
palum ionanthum, and Paspalum notatum (Tables 1, 2, and 
3) (Braman et al. 2014; Guera et al. 2020; Cheruiyot et al. 
2021b).

An important open question also remains about the 
effects of different densities of push plants on maize pest 
infestation, particularly Desmodium spp. and the FAW 
attack but also Crotalaria spp. (Dzvene et al. 2022). If a 
lower density of Desmodium is sufficient to repel FAW, 
higher flexibility may be offered for the integration of other 
food plants with the Desmodium intercrop. However, no 
studies are currently available testing the impact of varying 
Desmodium planting ratios on pest repellence. Although the 
optimum plant densities for maize-beans, maize-squash, and 
maize-beans-squash are well understood (Altieri 1999; Sil-
wana and Lucas 2002), further research is needed in order 
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Table 3   Weed control and soil properties of candidate plant species 
for milpa push-pull. Identified or potential “push” and “pull” proper-
ties refer to plants’ action on lepidopteran pests, with “push” indicat-
ing a repellent and “pull” an attractive effect on pests, respectively. 

These traits are described in more detail in Table  2. Some plants 
found to have both “push” and “pull” activity are listed in both cat-
egories. Question marks indicate knowledge gaps

Plant Provokes Striga 
germination

Prevents Striga radi-
cle development

Other weed 
prevention

N-fixation Erosion control Comments References

Plants with identified or potential “push” properties for lepidopteran pests
  Dysphania ambro-

sioides
No No No No No - (Guera et al. 2020, 2021)

  Tagetes erecta No No No No No -
  Clitoria ternatea Yes ? ? Yes No - (Njunie et al. 2022)
  Crotalaria brevidens Yes Yes Yes Yes Yes - (Mwakha et al. 2020)
  Crotalaria juncea Yes Yes Yes Yes Yes Very effective at com-

petitively displacing 
weeds

(Fischer et al. 2020; 
Guera et al. 2020, 2021; 
Bundit et al. 2021)

  Crotalaria longiro-
strata

Yes ? ? Yes ? - (Morton 1994)

  Crotalaria ochroleuca Yes Yes Yes Yes Yes - (Mwakha et al. 2020)
  Crotalaria pumila Yes ? ? Yes ? - (Manzanero-Medina et al. 

2020)
  Desmodium incanum Yes Yes Yes Yes Yes - (Khan et al. 2014; Midega 

et al. 2017; Cheruiyot 
et al. 2021a)

  Desmodium intortum Yes Yes Yes Yes Yes -
  Desmodium unci-

natum
Yes Yes Yes Yes Yes -

  Brachiaria brizantha 
cv. ‘Mulato II’

No No No No Yes - (Cheruiyot et al. 2021b)

  Melinis minutiflora No No No No Yes - (Cheruiyot et al. 2021b, a; 
Erdei et al. 2022)

Plants with identified or potential “pull” properties for lepidopteran pests
  Desmodium intortum Yes Yes Yes Yes Yes - (Khan et al. 2014; Midega 

et al. 2017)  Desmodium unci-
natum

Yes Yes Yes Yes Yes -

  Brachiaria brizantha 
cv. ‘Mulato II’

No No No No Yes - (Truong et al. 2008; 
Tolosa et al. 2019; 
Guera et al. 2020; 
Cheruiyot et al. 2021b, 
a)

  Brachiaria brizantha 
cv. ‘Xaraes’

No No No No Yes -

  Melinis minutiflora No No No No Yes -
  Panicum maximum 

cv. Mombasa
No No No No Yes -

  Paspalum notatum No No No No Yes -
  Pennisetum pur-

pureum cv. Ouma II
No No No No Yes -

  Pennisetum pur-
pureum cv. South 
Africa

No No No No Yes -

  Vetiveria zizanioides No No No No Yes -
High food value plants commonly intercropped with cereals
  Amaranthus spp. No No No No No - (Alemayehu et al. 2015; 

Reddy 2017)
  Cleome gynandra No No ? No No - (Reddy 2017)
  Cucurbita spp. No No Yes No Yes - (Novotny et al. 2021; 

Lopez-Ridaura et al. 
2021)
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to integrate other plant combinations with optimal densi-
ties and configurations. Also, further research on adequate 
planting timings in intercrops is needed because this can 
have major impacts on yield and pest damage (Altieri 1980).

Finally, studies that exploit the apparent incongruence 
between larval and adult FAW host selection are needed 
to maximize the efficiency of integrated pest management 
strategies (Rojas et al. 2018; Sotelo-Cardona et al. 2021). 
Furthermore, context-dependent effects and non-trivial rela-
tionships among natural enemies must be further explored 
when selecting appropriate species for intercropping.

6 � Conclusion

The Mesoamerican milpa and East African PPT systems 
have the potential to complement each other and promote 
sustainable food production, but there has been little to no 
cross-system learning to date. We reviewed extant litera-
ture on both systems and present the likely advantages of 
combining them in small-scale farming in the Americas and 
sub-Saharan Africa. Designing effective combinations of 
milpa with PPT has the potential to reduce poverty, address 
food security challenges and provide farmers with increased 
flexibility to adapt and rotate crops. This can be achieved 
by merging the respective benefits of different companion 
plants for crop protection against pests, increased food pro-
duction, and diversified nutrition, along with improved soil 
moisture, fertility, and other benefits such as fodder produc-
tion. The larger range of possibilities provided by the milpa 
push-pull system to adapt the composition and configuration 
of its components is likely to increase the resilience of small-
holders to socio-environmental challenges. Based on existing 
knowledge of both cropping systems, we show that there is a 

large potential for such configurations to be highly adaptive 
according to the key pressures influencing production in dif-
ferent regions. Through the selection of plant species and cul-
tivars with specific traits, integrated milpa push-pull systems 
could be adapted to different gradients of altitude, rainfall, 
and soil nutrient levels. Milpa push-pull is likely to combine 
the benefits of the milpa and push-pull systems to robustly 
increase yields, yield stability, and soil fertility in the long 
term, even under predicted scenarios of climate change and 
increasing pest pressure. Co-development and testing of the 
milpa push-pull concept by farmers and scientists will bring 
further insight into its effectiveness and optimal design. We 
conclude that a fruitful exchange of knowledge on sustainable 
and traditional cropping systems practiced by smallholders 
in different parts of the world is an essential approach for 
key insights and inspiration toward further development of 
biodiversity-friendly farming practices with a high capacity 
for resilience and social-ecological adaptation.
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Table 3   (continued)

Plant Provokes Striga 
germination

Prevents Striga radi-
cle development

Other weed 
prevention

N-fixation Erosion control Comments References

  Arachis hypogaea Yes No No Yes No - (Khan et al. 2007; Ndayi-
saba et al. 2020)

  Cajanus cajan Yes No No Yes No -

  Crotalaria longiro-
strata

Yes No No Yes ? -

  Crotalaria pumila Yes No No Yes ? -

  Glycine max Yes No No Yes No -

  Phaseolus spp. Yes No No Yes No -

  Vicia faba Yes No No Yes No -

  Vigna radiata Yes No No Yes No -

  Vigna subterranea Yes No No Yes No -

  Vigna unguiculata Yes No No Yes No -
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